Cho hàm số \( y=f(x) \) là hàm số lẻ trên \( \mathbb{R} \) và đồng thời thỏa mãn hai điều kiện \( f(x+1)=f(x)+1,\forall x\in \mathbb{R} \) và \( f\left( \frac{1}{x} \right)=\frac{f(x)}{{{x}^{2}}},\forall x\ne 0 \). Gọi \( I=\int\limits_{0}^{1}{\frac{f(x)}{{{f}^{2}}(x)+1}dx} \). Hãy chọn khẳng định đúng về giá trị của I.
A. \( I\in (-1;0) \)
B. \( I\in (1;2) \)
C. \( I\in (0;1) \)
D. \( I\in (-2;-1) \)
Hướng dẫn giải:
Đáp án C.
+ Đặt \( y=f(x) \). Khi đó từ giả thiết ta có:
\( f(x+1)=y+1 \), \( f\left( \frac{1}{x} \right)=\frac{f(x)}{{{x}^{2}}}\Rightarrow f\left( \frac{1}{x+1} \right)=\frac{f(x+1)}{{{(x+1)}^{2}}}=\frac{y+1}{{{(x+1)}^{2}}} \) , \( f\left( -\frac{1}{x+1} \right)=-\frac{y+1}{{{(x+1)}^{2}}} \).
Suy ra: \( f\left( \frac{x}{x+1} \right)=f\left( -\frac{1}{x+1}+1 \right)=f\left( -\frac{1}{x+1} \right)+1=-\frac{y+1}{{{(x+1)}^{2}}}+1=\frac{{{x}^{2}}+2x-y}{{{(x+1)}^{2}}} \) (1)
Và \(f\left( \frac{x+1}{x} \right)=f\left( 1+\frac{1}{x} \right)=1+f\left( \frac{1}{x} \right)=1+\frac{y}{{{x}^{2}}}=\frac{{{x}^{2}}+y}{{{x}^{2}}}\).
\( f\left( \frac{x}{x+1} \right)=f\left( \frac{1}{\frac{x+1}{x}} \right)=\frac{f\left( \frac{x+1}{x} \right)}{{{\left( \frac{x+1}{x} \right)}^{2}}}=\frac{\frac{{{x}^{2}}+y}{{{x}^{2}}}}{{{\left( \frac{x+1}{x} \right)}^{2}}}=\frac{{{x}^{2}}+y}{{{(x+1)}^{2}}} \) (2)
+ Từ (1) và (2) suy ra: \( \frac{{{x}^{2}}+2x-y}{{{(x+1)}^{2}}}=\frac{{{x}^{2}}+y}{{{(x+1)}^{2}}}\Leftrightarrow {{x}^{2}}+2x-y={{x}^{2}}+y\Rightarrow y=x\Rightarrow f(x)=x \).
Do đó: \( I=\int\limits_{0}^{1}{\frac{f(x)}{{{f}^{2}}(x)+1}dx}=\int\limits_{0}^{1}{\frac{x}{{{x}^{2}}+1}dx}=\frac{1}{2}\int\limits_{0}^{1}{\frac{1}{{{x}^{2}}+1}d({{x}^{2}}+1)}=\left. \frac{1}{2}\ln ({{x}^{2}}+1) \right|_{0}^{1}=\frac{1}{2}\ln 2\approx 0,35 \)
Vậy \( I\in (0;1) \).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Hệ Thống Trung Tâm Nhân Tài Việt!
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh các lớp 10, 11, 12, LTDH
- Cơ sở 1: Khu đô thị Garden, Thị trấn Đức Tài, Huyện Đức Linh, Tỉnh Bình Thuận
- Cơ sở 2: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Cơ sở 3: số 33/66, hẻm 33, đường số 5, P. Bình Hưng Hòa, Quận Tân Bình, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!