Định lí Thales Các bài toán về Định lí Thales! Cho tam giác nhọn ABC, gọi (O1), (O2) là tâm đường tròn bàng tiếp của tam giác ứng với góc Bˆ và Cˆ. Đường tròn (O1) tiếp xúc với cạnh BC, AB, CA tại M, N, E đường tròn (O2) tiếp xúc với cạnh BC, AC, AB tại P, Q, F; đường thẳng MN và PQ cắt nhau tại DXem lời giải!Cho tứ giác ABCD, AB không song song với CD. Đường tròn (C1) qua A, B và tiếp xúc với CD tại P, đường tròn (C2) qua C, D và tiếp xúc với AB tại Q, (C1) và (C2) cắt nhau tại E và FXem lời giải!Cho tam giác ABC nội tiếp đường tròn (O), AD là phân giác của tam giác, M là điểm thay đổi trên AD, P và Q là hình chiếu của M trên AB và AC, I là trung điểm BC, H là hình chiếu của I trên PQXem lời giải!Cho đa giác ABCDE, thỏa mãn BACˆ=CADˆ=DAEˆ và ABCˆ=ACDˆ=ADEˆ. Đường thẳng BD cắt CE tại M. Chứng minh rằng AM đi qua trung điểm CDXem lời giải!Cho bộ ba điểm thẳng hàng theo thứ tự (A1,A2,A3) và (B1,B2,B3) thỏa mãn A1A2/A1A3=B1B2/B1B3=k. Trên A1B1,A2B2,A3B3 lần lượt lấy các điểm C1,C2,C3 thỏa mãn C1A1/C1B1=C2A2C2B2=C3A3C3B3Xem lời giải!Cho tam giác ABC, M là điểm trên cạnh BC. Chứng minh rằng MA.BCXem lời giải!Cho tam giác ABC. Qua đỉnh A bờ AB kẻ tia Ax và tia Ay thỏa mãn Ax∥BC và tia Ax nằm trong góc CAyˆ, từ C kẻ đường thẳng d cắt Ax tại D và Ay tại E, đường thẳng BD cắt AC tại FXem lời giải!Cho tứ giác ABCD, O là giao điểm hai đường chéo AC, BD. Gọi M, N là trung điểm của BD và AC, H là điểm đối xứng của O qua MN, đường thẳng qua H và song song với MN cắt AD, BC, BD, AC lần lượt tại P, Q, E, F. Chứng minh rằng PE=QFXem lời giải!Cho tam giác nhọn ABC, đường phân giác AD, gọi M và B là hình chiếu của D trên AC và AB. Giao điểm của BM và CN là P. Chứng minh rằng AP vuông góc với BCXem lời giải!12›Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành! Error: View 5536128neb may not existFacebookTwitterLinkedIn