Phương trình mặt phẳng Nhận biết - Thông hiểu! Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;1;1) và hai mặt phẳng (P):2x−y+3z−1=0, (Q):y=0. Viết phương trình mặt phẳng (R) chứa A, vuông góc với cả hai mặt phẳng (P) và (Q)Xem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q):x+y+3z=0, (R):2x−y+z=0 làXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x+y+z+1=0, (Q):2y+z−5=0 và (R):x−y+z−2=0. Gọi (α) là mặt phẳng qua giao tuyến của (P) và (Q), đồng thời vuông góc với (R). Phương trình của (α) làXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): ax+by+cz−9=0 chứa hai điểm A(3;2;1), B(-3;5;2) và vuông góc với mặt phẳng (Q): 3x+y+z+4=0. Tính tổng S = a + b + cXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (α):3x−2y+2z+7=0 và (β):5x−4y+3z+1=0. Phương trình mặt phẳng qua O, đồng thời vuông góc với cả (α) và (β) có phương trình làXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng đi qua hai điểm A(0;1;0), B(2;0;1) và vuông góc với mặt phẳng (P)Xem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x−3y+2z−1=0, (Q):x−z+2=0. Mặt phẳng (α) vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của mặt phẳng (α) làXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho A(1;-1;2), B(2;1;1) và mặt phẳng (P): x+y+z+1=0. Mặt phẳng (Q) chứa A, B và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình làXem Chi TiếtTrong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P):x−3y+2z−5=0. Một mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P) có dạng ax+by+cz−11=0Xem Chi Tiết12›Vận dụng - Vận dụng cao! cho mặt cầu \( {{(x-3)}^{2}}+{{(y-1)}^{2}}+{{z}^{2}}=4 \) và đường thẳng \( d:\left\{ \begin{align} & x=1+2t \\ & y=-1+t \\ & z=-t \\ \end{align} \right.,\text{ }t\in \mathbb{R} \). Mặt phẳng chứa d và cắt (S) theo một đường tròn có bán kính nhỏ nhất có phương trình làXem lời giải!cho mặt cầu (S):x2+y2+z2−2x−4y−6z−2=0 và mặt phẳng (α):4x+3y−12z+10=0. Lập phương trình mặt phẳng (β) thỏa mãn đồng thời các điều kiện: tiếp xúc với (S), song song với (α) và cắt trục Oz ở điểm có cao độ dươngXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình làXem lời giải!FacebookTwitterLinkedIn