Cực trị trong số phức Cực trị trong số phức! Biết rằng hai số phức z1, z2 thỏa mãn |z1−3−4i|=1 và |z2−3−4i|=12. Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a−2b=12. Giá trị nhỏ nhất của P=|z−z1|+|z−2z2|+2 bằngXem lời giải!Xét các số phức z=a+bi (a,b∈R) thỏa mãn |z−3−2i|=2. Tính a+b khi |z+1−2i|+2|z−2−5i| đạt giá trị nhỏ nhấtXem lời giải!Cho các số phức w, z thỏa mãn \( \left| w+i \right|=\frac{3\sqrt{5}}{5} \) và \( 5w=(2+i)(z-4) \). Giá trị lớn nhất của biểu thức \( P=\left| z-1-2i \right|+\left| z-5-2i \right| \) bằngXem lời giải!Cho số phức z thỏa |z|=1. Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P=∣z^5+z¯^3+6z∣−2∣z^4+1∣. Tính M−mXem lời giải!Cho hai số phức z, w thỏa mãn \( \left\{ \begin{align} & \left| z-3-2i \right|\le 1 \\ & \left| w+1+2i \right|\le \left| w-2-i \right| \\ \end{align} \right. \). Tìm giá trị nhỏ nhất của biểu thức \( P=\left| z-w \right| \)Xem lời giải!Cho số phức z1, z2 thỏa mãn |z1+1−i|=2 và z2=iz1. Tìm giá trị nhỏ nhất m của biểu thức |z1−z2|Xem lời giải!Cho số phức z thỏa mãn |z−3−4i|=√5. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=|z+2|^2−|z−i|^2. Môđun của số phức w=M+mi làXem lời giải!Xét số phức z thỏa mãn |z−2−2i|=2. Giá trị nhỏ nhất của biểu thức P=|z−1−i|+|z−5−2i| bằngXem lời giải!Cho số phức z thỏa mãn |z−2i|≤|z−4i| và |z−3−3i|=1. Giá trị lớn nhất của biểu thức P=|z−2| làXem lời giải!123…5›FacebookTwitterLinkedIn