Phương trình mặt cầu Nhận biết - Thông hiểu! cho mặt phẳng (P):2x−2y+z+3=0 và mặt cầu (S):(x−1)^2+(y+3)2+z2=9 và đường thẳng d:x/−2=y+2/1=z+1/2Xem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3;0;0), B(0;−2;0), C(0;0;−4). Mặt cầu ngoại tiếp tứ diện OABC có diện tích bằngXem lời giải!Cho phương trình x^2+y^2+z^2−4x+2my+3m^2−2m=0 với m là tham số m. Tính tổng tất cả các giá trị nguyên của m để phương trình đã cho là phương trình mặt cầuXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng Oxy và đi qua ba điểm A(1;2;−4), B(1;−3;1), C(2;2;3). Tọa độ tâm I của mặt cầu làXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho phương trình x^2+y^2+z^2−2(m+2)x+4my−2mz+5m^2+9=0. Tìm các giá trị của m để phương trình trên là phương trình của một mặt cầuXem lời giải!Trong không gian Oxyz có tất cả bao nhiêu giá trị nguyên m để phương trình x^2+y^2+z^2+4mx+2my−2mz+9m^2−28=0 là phương trình mặt cầuXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, tìm tất cả các giá trị của m để phương trình x^2+y^2+z^2−2(m+2)x+4my+19m−6=0 là phương trình mặt cầuXem lời giải!Trong không gian Oxyz, có tất cả bao nhiêu giá nguyên của m để x^2+y^2+z^2+2(m+2)−2(m−1)z+3m^2−5=0 là phương trình một mặt cầuXem lời giải!Vận dụng - Vận dụng cao! Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x2+y2+z2−2x−4y+6z−13=0 và đường thẳng d:x+11=y+21=z−11. Điểm M(a;b;c), (a>0) nằm trên đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm) và AMBˆ=60O, BMCˆ=60O và CMAˆ=120OXem lời giải!Viết phương trình mặt cầu (S) có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d1 và d2Xem lời giải!cho hai đường thẳng Δ1:x+1/2=y+1/1=z+1/2 và Δ2:x−1/2=y−1/2=z−1/1. Tính diện tích mặt cầu có bán kính nhỏ nhất, đồng thời tiếp xúc với cả hai đường thẳng Δ1 và Δ2Xem lời giải!cho mặt phẳng (P):x+y−z−3=0 và hai điểm M(1;1;1), N(-3;-3;-3). Mặt cầu (S) đi qua M, N và tiếp xúc với mặt phẳng (P) tại điểm Q. Biết rằng Q luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.Xem lời giải!cho mặt phẳng (P):z+2=0, K(0;0;-2), đường thẳng d:x/1=y/1=z/1. Phương trình mặt cầu tâm thuộc đường thẳng d và cắt mặt phẳng (P) theo thiết diện là đường tròn tâm K, bán kính r=√5 làXem lời giải!cho mặt cầu (S):x2+y2+z2−2x+2z+1=0 và đường thẳng d:x/1=y−2/1=z/−1. Hai mặt phẳng (P), (P′) chứa d và tiếp xúc với (S) tại T, T’. Tìm tọa độ trung điểm H của TT′Xem lời giải!cho mặt cầu \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}=9 \) và điểm \( M({{x}_{0}};{{y}_{0}};{{z}_{0}})\in d:\left\{ \begin{align} & x=1+t \\ & y=1+2t \\ & z=2-3t \\ \end{align} \right. \). Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho MA, MB, MC là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng (SBC) đi qua điểm D(1;1;2). Tổng \( T=x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \) bằngXem lời giải!cho hai điểm A(1;1;1), B(2;2;1) và mặt phẳng (P):x+y+2z=0. Mặt cầu (S) thay đổi qua A, B và tiếp xúc với (P) tại H. Biết H chạy trên 1 đường tròn cố định. Tìm bán kính của đường tròn đóXem lời giải!cho mặt phẳng (P):2x−2y−z+9=0 và mặt cầu (S):(x−3)2+(y+2)2+(z−1)2=100. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C). Tìm tọa độ tâm K và bán kính r của đường tròn (C) làXem lời giải!123›FacebookTwitterLinkedIn