cho hai điểm A(1;1;1), B(2;2;1) và mặt phẳng (P):x+y+2z=0. Mặt cầu (S) thay đổi qua A, B và tiếp xúc với (P) tại H. Biết H chạy trên 1 đường tròn cố định. Tìm bán kính của đường tròn đó

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;1;1), B(2;2;1) và mặt phẳng \( (P):x+y+2z=0 \). Mặt cầu (S) thay đổi qua A, B và tiếp xúc với (P) tại H. Biết H chạy trên 1 đường tròn cố định. Tìm bán kính của đường tròn đó.

A. \( 3\sqrt{2} \)

B.  \( 2\sqrt{3} \)                       

C.  \( \sqrt{3} \)                

D.  \( \frac{\sqrt{3}}{2} \)

Hướng dẫn giải:

Chọn B

Có A(1;1;1), B(2;2;1)  \( \Rightarrow  \) Phương trình AB:  \( \left\{ \begin{align} & x=1+t \\  & y=1+t \\  & z=1 \\ \end{align} \right. \).

Gọi K là giao điểm của AB và (P)  \( \Rightarrow K(-1;-1;1) \).

Có mặt cầu (S) tiếp xúc với (P) tại H.

 \( \Rightarrow HK  \) là tiếp tuyến của (S).

 \( \Rightarrow K{{H}^{2}}=\overrightarrow{KA}.\overrightarrow{KB}=12\Rightarrow KH=2\sqrt{3} \) không đổi.

 \( \Rightarrow  \) Biết H chạy trên 1 đường tròn bán kính  \( 2\sqrt{3} \) không đổi.

Các bài toán liên quan

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *