Phương trình đường thẳng Nhận biết - Thông hiểu! Trong không gian với hệ trục tọa độ Oxyz, cho A(1;-1;3) và hai đường thẳng d1:(x−4)/1=(y+2)/4=(z−1)/−2, d2:(x−2)/1=(y+1)/−1=(z−1)/1. Phương trình đường thẳng qua A, vuông góc với d1 và cắt d2 làXem lời giải!Trong không gian Oxyz, cho hai đường thẳng d1:x=1+3t;y=−2+t;z=2, d2:(x−1)/2=(y+2)/−1=z/2 và mặt phẳng (P):2x+2y−3z=0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của d1 và (P), đồng thời vuông góc với d2Xem lời giải!Trong không gian Oxyz, cho điểm M(−1;1;3) và hai đường thẳng Δ:(x−1)/3=(y+3)/2=(z−1)/1, Δ′:(x+1)/1=y/3=z/−2. Phương trình nào dưới đây là phương trình đường thẳng đi qua M và vuông góc với Δ và Δ′Xem lời giải!Trong không gian Oxyz, cho A(0;0;2), B(2;1;0), C(1;2;-1) và D(2;0;-2). Đường thẳng đi qua A và vuông góc với (BCD) có phương trình làXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d:(x+1)/1=(y−1)/−2=(z−2)/2. Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình làXem lời giải!Trong không gian Oxyz, cho các điểm A(2;-1;0), B(1;2;1), C(3;-2;0), D(1;1;-3). Đường thẳng đi qua D và vuông góc với mặt phẳng (ABC) có phương trình làXem lời giải!Trong không gian Oxyz, cho các điểm A(1;2;0), B(2;0;0), C(2;-1;3), D(1;1;3). Đường thẳng đi qua C và vuông góc với mặt phẳng (ABD) có phương trình làXem lời giải!Trong không gian Oxyz, cho các điểm A(1;0;2), B(1;2;1), C(3;2;0) và D(1;1;3). Đường thẳng đi qua A và vuông góc với mặt phẳng (BCD) có phương trình làXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng d:(x−3)/2=(y−1)/1=(z+7)/−2. Đường thẳng đi qua A, vuông góc với d và cắt trục Ox có phương trình làXem lời giải!Vận dụng - Vận dụng cao! cho điểm M(-3;3;-3) thuộc mặt phẳng (α):2x−2y+z+15=0 và mặt cầu (S):(x−2)^2+(y−3)^2+(z−5)^2=100. Đường thẳng Δ qua M, nằm trên mặt phẳng (α) cắt (S) tại A, B sao cho độ dài AB lớn nhấtXem lời giải!cho mặt cầu (S):(x−1)2+(y−2)2+(z−1)2=9, mặt phẳng (P):x−y+z+3=0 và điểm N(1;0;-4) thuộc (P). Một đường thẳng Δ đi qua N nằm trong (P) cắt (S) tại hai điểm A, B thỏa mãn AB=4Xem lời giải!cho điểm A(0;1;-2), mặt phẳng (P):x+y+z+1=0 và mặt cầu (S):x2+y2+z2−2x−4y−7=0. Gọi Δ là đường thẳng đi qua A và Δ nằm trong mặt phẳng (P) và cắt mặt cầu (S) tại hai điểm B, C sao cho tam giác IBC có diện tích lớn nhất, với I là tâm của mặt cầu (S)Xem lời giải!cho điểm E(1;1;1), mặt phẳng (P):x−3y+5z−3=0 và mặt cầu (S):x^2+y^2+z^2=4. Gọi Δ là đường thẳng qua E, nằm trong mặt phẳng (P) và cắt (S) tại 2 điểm phân biệt A, B sao cho AB=2. Phương trình đường thẳng Δ làXem lời giải!cho điểm E(2;1;3), mặt phẳng (P):2x+2y−z−3=0 và mặt cầu (S):(x−3)^2+(y−2)^2+(z−5)^2=36. Gọi Δ là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của Δ làXem lời giải!cho mặt cầu (S):(x−2)^2+(y−3)^2+(z−4)^2=14 và mặt phẳng (α):x+3y+2z−5=0. Biết đường thẳng Δ nằm trong (α), cắt trục Ox và tiếp xúc với (S). Vectơ nào sau đây là vectơ chỉ phương của ΔXem lời giải!cho mặt cầu \( (S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-6y+m=0 \) (m là tham số) và đường thẳng \( \Delta :\left\{ \begin{align} & x=4+2t \\ & y=3+t \\ & z=3+2t \\ \end{align} \right. \). Biết đường thẳng \( \Delta\) cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho \( AB=8 \). Giá trị của m làXem lời giải!Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng (P):x+y+z=0. Xét đường thẳng d thay đổi được (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đóXem lời giải!Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng d:(x−1)/1=(y−2)/2=(z−3)/3. Đường thẳng đi qua M, vuông góc với d và cắt Oz có phương trình làXem lời giải!12›FacebookTwitterLinkedIn