cho mặt cầu \( (S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-6y+m=0 \) (m là tham số) và đường thẳng \( \Delta :\left\{ \begin{align}  & x=4+2t \\  & y=3+t \\  & z=3+2t \\ \end{align} \right. \). Biết đường thẳng \( \Delta\) cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho \( AB=8 \). Giá trị của m là

Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \( (S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-6y+m=0 \) (m là tham số) và đường thẳng  \( \Delta :\left\{ \begin{align}  & x=4+2t \\  & y=3+t \\  & z=3+2t \\ \end{align} \right. \). Biết đường thẳng  \( \Delta  \) cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho  \( AB=8 \). Giá trị của m là:

A. \( m=5 \)

B. \( m=12 \)                   

C. \( m=-12 \)

D. \( m=-10 \)

Hướng dẫn giải:

Chọn C

Gọi H là trung điểm đoạn AB  \( \Rightarrow IH\bot AB,\text{ }AH=4 \).

Mặt cầu (S) có tâm I(-2;3;0), bán kính  \( R=\sqrt{13-m},\text{ }(m<13) \).

Đường thẳng  \( \Delta \)  đi qua M(4;3;3) và có 1 vectơ chỉ phương  \( \vec{u}=(2;1;2) \).

Ta có: \(\overrightarrow{IM}=(6;0;3)\Rightarrow \left[ \overrightarrow{IM},\vec{u} \right]=(-3;-6;6)\Rightarrow IH=d\left( I,\Delta  \right)=\frac{\left| \left[ \overrightarrow{IM},\vec{u} \right] \right|}{\left| {\vec{u}} \right|}=3\).

Ta có:  \( {{R}^{2}}=I{{H}^{2}}+H{{A}^{2}}\Leftrightarrow 13-m={{3}^{2}}+{{4}^{2}}\Leftrightarrow m=-12 \).

Các bài toán liên quan

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *