Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng (P):x+y+z=0. Xét đường thẳng d thay đổi được (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó

(THPTQG – 2017 – 110) Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng \( (P):x+y+z=0 \). Xét đường thẳng d thay đổi được (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó.

\( R=\sqrt{3} \) B.  \( R=2 \)                      C.  \( R=1 \)                      D.  \( R=\sqrt{6} \)

Hướng dẫn giải:

Chọn D

Gọi I là trung điểm của AB  \( \Rightarrow I(3;2;1) \).

 \( d\left( I,(P) \right)=\frac{\left| 3+2+1 \right|}{\sqrt{3}}=2\sqrt{3} \).

Gọi (S) là mặt cầu có tâm I(3;2;1) và bán kính  \( {R}’=\frac{AB}{2}=3\sqrt{2} \).

Ta có  \( H\in (S) \). Mặt khác,  \( H\in (P) \) nên  \( H\in (C)=(S)\cap (P) \).

Bán kính của đường tròn (C) là  \( R=\sqrt{{{({R}’)}^{2}}-{{d}^{2}}\left( I,(P) \right)}=\sqrt{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( 2\sqrt{3} \right)}^{2}}}=\sqrt{6} \).

Các bài toán liên quan

Các bài toán mới!

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *