Phương trình số phức Nhận biết - Thông hiểu! Cho các số phức z, w khác 0 thỏa mãn z+w≠0 và 1/z+3/w=6/(z+w). Khi đó ∣z/w∣ bằngXem lời giải!Gọi z1,z2 là hai nghiệm phức của phương trình z^2−4z+5=0. Giá trị của biểu thức (z1−1)^2019+(z2−1)^2019 bằngXem lời giải!Cho số phức z=a+bi (a,b∈R) thỏa mãn z+1+3i−|z|i=0. Tính S=2a+3bXem lời giải!Gọi S là tổng các số thực m để phương trình z^2−2z+1−m=0 có nghiệm phức thỏa mãn |z|=2. Tính SXem lời giải!Cho phương trình az^2+bz+c=0, với a,b,c∈R,a≠0 có các nghiệm z1,z2 đều không là số thực. Tính P=|z1+z2|^2+|z1−z2|^2 theo a, b, cXem lời giải!Tính môđun của số phức w=b+ci, b,c∈R biết số phức (i^8−1−2i)/(1−i^7) là nghiệm của phương trình z^2+bz+c=0Xem lời giải!Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z^4−z^2−12=0. Tính tổng T=|z1|+|z2|+|z3|+|z4|Xem lời giải!Vận dụng - Vận dụng cao! Có bao nhiêu giá trị dương của số thực a sao cho phương trình z^2+√3z+a^2−2a=0 có nghiệm phức z0 với phần ảo khác 0 thỏa mãn |z0|=√3Xem lời giải!Xét số phức z thỏa mãn (1+2i)|z|=√10/z−2+i. Mệnh đề nào dưới đây đúngXem lời giải!Cho phương trình x^2−4x+c/d=0 (với phân số c/d tối giản) có hai nghiệm phức. Gọi A, B là hai điểm biểu diễn của hai nghiệm đó trên mặt phẳng Oxy. Biết tam giác OAB đều (với O là gốc tọa độ), tính P=c+2dXem lời giải!Số phức z=a+bi, a,b∈R là nghiệm của phương trình (|z|−1)(1+iz)/(z−1/z¯)=i. Tổng T=a^2+b^2 bằngXem lời giải!cho số phức w và hai số thực a, b. Biết rằng w+i và 2w−1 là hai nghiệm của phương trình z^2+az+b=0. Tổng S=a+b bằngXem lời giải!Cho phương trình z^2+bz+c=0 có hai nghiệm z1,z2 thỏa mãn z^2−z^1=4+2i. Gọi A, B là các điểm biểu diễn các nghiệm của phương trình z^2−2bz+4c=0. Tính độ dài đoạn ABXem lời giải!Gọi z là một nghiệm của phương trình z^2−z+1=0. Giá trị của biểu thức M=z^2019+z^2018+1/z^2019+1/z^2018+5 bằngXem lời giải!Gọi S là tổng các giá trị thực của m để phương trình 9z^2+6z+1−m=0 có nghiệm phức thỏa mãn |z|=1. Tính SXem lời giải!Gọi A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn cho các số phức z1,z2 khác 0 thỏa mãn đẳng thức z^21+z^22−z1z2=0, khi đó tam giác OAB (O là gốc tọa độ)Xem lời giải!FacebookTwitterLinkedIn