Biểu diễn tập hợp điểm số phức Nhận biết - Thông hiểu! Trong mặt phẳng tọa độ điểm biểu diễn số phức z thỏa mãn |z−1−2i|=3 làXem lời giải!Cho số phức z thỏa mãn ∣z/(i+2)∣=1. Biết rằng tập hợp các điểm biểu diễn số phức z là một đường tròn (C). Tính bán kính r của đường tròn (C)Xem lời giải!Tập hợp các điểm biểu diễn số phức z thỏa mãn |z−i|=|(1+i)z| là một đường tròn, tâm của đường tròn đó có tọa độ làXem lời giải!Trong mặt phẳng phức, tập hợp các điểm biểu diễn số phức z thỏa mãn z.z¯=1 làXem lời giải!Xét các số phức z thỏa mãn (z¯+i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằngXem lời giải!Xét các số phức z thỏa mãn (z+2i)(z¯+2) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độXem lời giải!Xét các số phức z thỏa mãn (z¯−2i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằngXem lời giải!Xét các số phức z thỏa mãn (z¯+2i)(z−2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằngXem lời giải!Xét các số phức z thỏa mãn (z¯+3i)(z−3) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằngXem lời giải!Vận dụng - Vận dụng cao! Cho số phức z thỏa |z−1+2i|=3. Biết rằng tập hợp các điểm biểu diễn của số phức w=2z+i trên mặt phẳng (Oxy) là một đường tròn. Tìm tâm của đường tròn đóXem lời giải!Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3−2i+(2−i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đóXem lời giải!Xét các số phức z thỏa mãn |z|=√2. Trên mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức w=(2+iz)/(1+z) là một đường tròn có bán kính bằngXem lời giải!Xét số phức z thỏa mãn |z|=√2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức w=(3+iz)/(1+z) là một đường tròn có bán kính bằngXem lời giải!Xét số phức z thỏa mãn |z|=√2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức w=(4+iz)/(1+z) là một đường tròn có bán kính bằngXem lời giải!Cho các số phức z thỏa mãn |z|=4. Biết rằng tập hợp các điểm biểu diễn các số phức w=(3+4i)z+i là một đường tròn. Tính bán kính r của đường tròn đóXem lời giải!Xét các số phức z thỏa mãn |z|=√2. Trên mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn các số phức w=(5+iz)/(1+z) là một đường tròn có bán kính bằngXem lời giải!FacebookTwitterLinkedIn