Cho tam giác nhọn ABC, đường phân giác AD, gọi M và B là hình chiếu của D trên AC và AB. Giao điểm của BM và CN là P. Chứng minh rằng AP vuông góc với BC.
Hướng dẫn giải:
Qua A kẻ đường thẳng d song song với BC, đường thẳng BM, CN cắt d tại E và F, gọi H là giao điểm của AP và BC. Theo định lí Thales, ta có:
\( \frac{HC}{HB}=\frac{AF}{AE},\text{ }\frac{AM}{CM}=\frac{AE}{BC}\Rightarrow AM=\frac{AE.CM}{BC},\text{ }\frac{AN}{BN}=\frac{AF}{BC}\Rightarrow AN=\frac{AF.BN}{BC} \);
\( DM\bot AC,\text{ }DN\bot AB,\text{ }\widehat{BAD}=\widehat{CAD}\Rightarrow \Delta AMD=\Delta AND\Rightarrow AN=AM \).
\( \Rightarrow AE.CM=AF.BN\Rightarrow \frac{CM}{BN}=\frac{AF}{AE}\Rightarrow \frac{HC}{HB}=\frac{CM}{BN} \) (*)
Kẻ \( AK\bot BC\Rightarrow \Delta DMC \) và \( \Delta AKC \) là hai tam giác vuông có góc \( \widehat{C} \) chung.
\( \Rightarrow \Delta DMC\backsim \Delta AKC\Rightarrow \frac{CD}{CA}=\frac{CM}{CK} \), tương tự \( \frac{BD}{AB}=\frac{BN}{BK} \).
AD là phân giác \( \Rightarrow \frac{CD}{CA}=\frac{BD}{AB}\Rightarrow \frac{CM}{CK}=\frac{BN}{BK}\Rightarrow \frac{CM}{BN}=\frac{CK}{BK} \), kết hợp (*)
\( \Rightarrow K\equiv H\Rightarrow AP\bot BC \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!