Cho tứ giác ABCD, đường chéo AC, BD cắt nhau tại O. Chứng minh rằng ABCD là hình thang khi và chỉ khi \( OA.OD=OB.OC \).
Hướng dẫn giải:
ABCD là hình thang, giả sử \( AB\parallel CD \)
\( \Rightarrow \frac{OA}{OC}=\frac{OB}{OD}\Rightarrow OA.OD=OB.OC \).
Ngược lại: Giả sử ta có \( OA.OD=OB.OC \)
\( \Rightarrow \frac{OA}{OC}=\frac{OB}{OD},\text{ }\widehat{AOB}=\widehat{DOC}\Rightarrow \Delta AOB\backsim \Delta COD \)
\( \Rightarrow \widehat{BAO}=\widehat{DCO}\Rightarrow AB\parallel CD\Rightarrow ABCD \) là hình thang.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
Các bài toán liên quan
Các bài toán cùng chủ đề!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Error: View 5536128neb may not exist
No comment yet, add your voice below!