Cho tam giác vuông ABC (vuông tại A), đường tròn tâm B bán kính BA và đường tròn tâm C, bán kính CA cắt nhau tại D (D khác A), BC cắt chuyển động tròn tâm (B) tại E, F và cắt đường tròn tâm (C) tại M, N

Cho tam giác vuông ABC (vuông tại A), đường tròn tâm B bán kính BA và đường tròn tâm C, bán kính CA cắt nhau tại D (D khác A), BC cắt chuyển động tròn tâm (B) tại E, F và cắt đường tròn tâm (C) tại M, N. Đường thẳng DM cắt AE tại P, DQ cắt AN tại Q.Kéo dài DM cắt đường tròn (B) tại I, DF cắt đường tròn (C) tại H. Chứng minh: \( \frac{IP}{IM}.\frac{HF}{HQ}=\frac{AB}{AC} \).

Hướng dẫn giải:

\( \widehat{AEN}+\widehat{ANE}=\frac{1}{2}\left( \widehat{B}+\widehat{C} \right)={{45}^{O}} \)

 \( \widehat{AEF}=\widehat{ADF},\text{ }\widehat{ANM}=\widehat{ADM} \)

 \( \Rightarrow \widehat{IDF}=\widehat{IDA}+\widehat{ADF}={{45}^{O}} \)

 \( \Rightarrow \widehat{IBF}={{90}^{O}}\Rightarrow IB\bot EF\Rightarrow \widehat{IAE}={{45}^{O}} \).

 \( \Rightarrow I,A,N \) thẳng hàng, tương tự E, A, H thẳng hàng.

 \( \Rightarrow \widehat{EAN}={{135}^{O}}\Rightarrow \) Tứ giác APDQ nội tiếp.

 \( \Rightarrow \widehat{APQ}=\widehat{ADQ}=\widehat{AEC}\Rightarrow PQ\parallel EN\Rightarrow \frac{AP}{AQ}=\frac{AE}{AN} \).

Áp dụng định lí Menelaus với  \( \Delta PEM \), cát tuyến IAN:  \( \frac{IP}{IM}.\frac{NM}{NE}.\frac{AE}{AP}=1 \).

Tương tự với  \( \Delta QFN\Rightarrow \frac{HF}{HQ}.\frac{AQ}{AN}.\frac{EN}{EF}=1 \).

Nhân hai đẳng thức trên ta được:  \( \frac{IP}{IM}.\frac{HF}{HQ}.\frac{NM.AE.AQ}{AP.EF.AN}=1\Rightarrow \frac{IP}{IM}.\frac{HF}{HQ}=\frac{EF}{NM}=\frac{AB}{AC} \).

Các bài toán liên quan

Các bài toán cùng chủ đề!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *