Cho tứ giác ABCD, O là giao điểm hai đường chéo AC, BD. Gọi M, N là trung điểm của BD và AC, H là điểm đối xứng của O qua MN, đường thẳng qua H và song song với MN cắt AD, BC, BD, AC lần lượt tại P, Q, E, F. Chứng minh rằng \( PE=QF \).
Hướng dẫn giải:
Theo giả thiết H đối xứng với O qua MN \( \Rightarrow OM=ME \) và \( MB=MD \) \( \Rightarrow OB=ED \), tương tự \( FC=OA \);
Qua O kẻ \( IJ\parallel MN \), theo định lí Thales \( \Rightarrow \frac{PE}{OI}=\frac{DE}{DO}=\frac{OB}{DO}\Rightarrow PE=\frac{OB.OI}{DO} \).
Tương tự \( QF=\frac{OA.OJ}{CO} \);
MN cắt AD và BC tại K và G.
\( \Rightarrow \frac{KM}{IO}=\frac{DM}{DO}=\frac{BD}{2DO},\text{ }\frac{KN}{IO}=\frac{AN}{AO}=\frac{AC}{2AO} \).
Trừ hai đẳng thức \( \Rightarrow \frac{MN}{IO}=\frac{1}{2}\left( \frac{AC}{AO}-\frac{BD}{DO} \right) \).
Tương tự \( \frac{MN}{JO}=\frac{1}{2}\left( \frac{BD}{BO}-\frac{AC}{CO} \right) \).
Để chứng minh \( PE=QF\Leftrightarrow \frac{OB.OI}{DO}=\frac{OA.OJ}{CO}\Leftrightarrow \frac{OB.MN}{DO.OJ}=\frac{OA.MN}{CO.OI} \)
\( \Leftrightarrow \frac{OB}{DO}\left( \frac{BD}{BO}-\frac{AC}{CO} \right)=\frac{OA}{CO}\left( \frac{AC}{AO}-\frac{BD}{DO} \right)\Leftrightarrow \frac{BD}{DO}-\frac{OB.AC}{DO.CO}=\frac{AC}{CO}-\frac{OA.BD}{CO.DO} \)
\( \Leftrightarrow \frac{BD}{DO}+\frac{OA.BD}{CO.DO}=\frac{AC}{CO}+\frac{OB.AC}{DO.CO} \), hai vế cho kết quả \( \frac{AC.BD}{DO.CO} \).
Ví dụ này ngoài vận dụng định lí Thales còn đòi hỏi biến đổi và kẻ thêm hình.
Các bài toán liên quan
Các bài toán cùng chủ đề!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Hệ Thống Trung Tâm Nhân Tài Việt!
- Nhận dạy môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh các lớp 10, 11, 12, LTDH
- Cơ sở 1: Khu đô thị Garden, Thị trấn Đức Tài, Huyện Đức Linh, Tỉnh Bình Thuận
- Cơ sở 2: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Cơ sở 3: số 33/66, hẻm 33, đường số 5, P. Bình Hưng Hòa, Quận Tân Bình, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!