Hàm số f(x) có đạo hàm cấp hai trên \( \mathbb{R} \) thỏa mãn: \( {{f}^{2}}(1-x)=({{x}^{2}}+3).f(x+1),\forall x\in \mathbb{R} \). Biết \( f(x)\ne 0,\forall x\in \mathbb{R} \). Tính \( I=\int\limits_{0}^{2}{(2x-1){f}”(x)dx} \)

Hàm số f(x) có đạo hàm cấp hai trên \( \mathbb{R} \) thỏa mãn:  \( {{f}^{2}}(1-x)=({{x}^{2}}+3).f(x+1),\forall x\in \mathbb{R} \). Biết  \( f(x)\ne 0,\forall x\in \mathbb{R} \). Tính  \( I=\int\limits_{0}^{2}{(2x-1){f}”(x)dx} \).

A. 4

B. 0                                   

C. 8                                   

D. -4

Hướng dẫn giải:

Đáp án A.

+ Xét  \( I=\int\limits_{0}^{2}{(2x-1){f}”(x)dx} \).

Đặt:  \( \left\{ \begin{align}  & u=2x-1\Rightarrow du=2dx \\  & dv={f}”(x)dx\Rightarrow v={f}'(x) \\ \end{align} \right. \).

Khi đó:  \( I=\int\limits_{0}^{2}{(2x-1){f}”(x)dx}=\left. (2x-1){f}'(x) \right|_{0}^{2}-\int\limits_{0}^{2}{2{f}'(x)dx} \)

 \( =3{f}'(2)+{f}'(0)-\left. 2f(x) \right|_{0}^{2}=3{f}'(2)+{f}'(0)-2f(2)+2f(0) \)   (*)

+ Ta có:  \( {{f}^{2}}(1-x)=({{x}^{2}}+3).f(x+1),\forall x\in \mathbb{R} \)

Ta thay:

 \( x=1\Rightarrow {{f}^{2}}(0)=4f(2) \).

 \( x=-1\Rightarrow {{f}^{2}}(2)=4f(0)\Rightarrow {{f}^{4}}(2)=64{{f}^{2}}(0)=64f(2) \).

Mà theo đề  \( f(x)\ne 0,\forall x\in \mathbb{R}\Rightarrow f(2)=4 \).

Vậy, ta có:  \( f(2)=f(0)=4 \)     (1)

+ Ta có:  \( -2{f}'(1-x).f(1-x)=2x.f(x+1)+({{x}^{2}}+3).{f}'(x+1) \).

Ta thay:

 \( x=1\Rightarrow -2{f}'(0).f(0)=2f(2)+4{f}'(2)\Rightarrow {f}'(2)+2{f}'(0)=-2 \).

 \( x=-1\Rightarrow -2{f}'(2).f(2)=-2f(0)+4{f}'(0)\Rightarrow 2{f}'(2)+{f}'(0)=2 \).

Vậy, ta có:  \( {f}'(0)=-2,\text{ }{f}'(2)=2 \)     (2)

Thế (1) và (2) vào (*), suy ra:

\(I=\int\limits_{0}^{2}{(2x-1){f}”(x)dx}=3{f}'(2)+{f}'(0)-2f(2)+2f(0)=3.2-2-2.4+2.4=4\).

Các bài toán liên quan

Hệ Thống Trung Tâm Nhân Tài Việt!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *