Cho tứ diện ABCD có thể tích V với M, N lần lượt là trung điểm AB, CD. Gọi V1, V2 lần lượt là thể tích của MNBC và MNDA

Cho tứ diện ABCD có thể tích V với M, N lần lượt là trung điểm AB, CD. Gọi V1, Vlần lượt là thể tích của MNBC và MNDA. Tính tỉ lệ \( \frac{{{V}_{1}}+{{V}_{2}}}{V} \)

A. 1

B. \( \frac{1}{2} \)           

C.  \( \frac{1}{3} \)          

D.  \( \frac{2}{3} \)

Hướng dẫn giải:

Đáp án B.

Vì M, N lần lượt là trung điểm AB, CD nên ta có:

d(A,(MCD))=d(B,(MCD)); d(C,(NAB)) = d(D,(NAB)), do đó:

 \( {{V}_{A.MCD}}={{V}_{B.MCD}}=\frac{1}{2}V  \);  \( {{V}_{1}}={{V}_{MNBC}}={{V}_{C.MNB}}={{V}_{D.MNB}}=\frac{{{V}_{B.MCD}}}{2}=\frac{1}{4}V  \)

 \( {{V}_{2}}={{V}_{MNAD}}={{V}_{D.MNA}}={{V}_{C.MNA}}=\frac{{{V}_{A.MCD}}}{2}=\frac{1}{4}V  \)

 \( \Rightarrow \frac{{{V}_{1}}+{{V}_{2}}}{V}=\frac{\frac{1}{4}V+\frac{1}{4}V}{V}=\frac{1}{2} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *