Cho khối lăng trụ ABC.A’B’C’, tam giác A’BC có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A’BC) bằng 2. Thể tích khối lăng trụ đã cho bằng

Cho khối lăng trụ ABC.A’B’C’, tam giác A’BC có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A’BC) bằng 2. Thể tích khối lăng trụ đã cho bằng

A. 6

B. 3

C. 2                                   

D. 1

Hướng dẫn giải:

Đáp án C.

Gọi H là hình chiếu vuông góc của A’ trên mặt phẳng (ABC) suy ra A’H là chiều cao của lăng trụ. Xét khối chóp A.A’BC có diện tích đáy  \( B={{S}_{\Delta A’BC}}=1 \), chiều cao  \( h={{d}_{\left( A,(A’BC) \right)}}=2 \)

Suy ra thể tích của khối chóp A.A’BC là:  \( {{V}_{A.A’BC}}=\frac{1}{3}Bh=\frac{1}{3}.1.2=\frac{2}{3} \)

Mặt khác:  \( \left\{ \begin{align}  & {{V}_{A.A’BC}}={{V}_{A’ABC}}=\frac{1}{3}{{S}_{\Delta ABC}}.A’H=\frac{2}{3} \\  & {{V}_{ABC.A’B’C’}}={{S}_{\Delta ABC}}.A’H \\ \end{align} \right. \)

 \( \Rightarrow {{V}_{ABC.A’B’C’}}=3{{V}_{A.A’BC}}=3.\frac{2}{3}=2 \)

Cách khác:

Ta thấy lăng trụ ABC.A’B’C’ được chia thành ba khối chóp có thể tích bằng nhau là: A’.ABC, A’.BCB’, A’.B’C’C.

Mà  \( {{V}_{A’.ABC}}={{V}_{A.A’BC}}=\frac{1}{3}.1.2=\frac{2}{3} \)

 \( \Rightarrow {{V}_{ABC.A’B’C’}}=3{{V}_{A.A’BC}}=3.\frac{2}{3}=2 \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

 

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *