Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của A’ trên (ABC) là trung điểm cạnh AB, góc giữa đường thẳng A’C và mặt phẳng đáy bằng 60O. Thể tích khối lăng trụ ABC.A’B’C’ bằng
A. \( \frac{\sqrt{2}{{a}^{3}}}{4} \)
B. \( \frac{\sqrt{3}{{a}^{3}}}{4} \)
C. \( \frac{3\sqrt{3}{{a}^{3}}}{8} \)
D. \( \frac{3\sqrt{3}{{a}^{3}}}{4} \)
Hướng dẫn giải:
Đáp án C.
Gọi H là hình chiếu vuông góc của A’ trên mặt phẳng (ABC).
Ta có: \( A’H\bot (ABC) \) \( \Rightarrow \) HC là hình chiếu vuông góc của A’C lên mặt phẳng (ABC).
\( \Rightarrow \widehat{\left( A’C,(ABC) \right)}=\widehat{\left( A’C,HC \right)}=\widehat{A’CH}={{60}^{0}} \)
\( CH=\frac{a\sqrt{3}}{2} \)
Xét tam giác vuông A’HC, ta có: \( A’H=CH.\tan {{60}^{0}}=\frac{a\sqrt{3}}{2}.\sqrt{3}=\frac{3a}{2}, {{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4} \).
Vậy thể tích của khối lăng trụ ABC.A’B’C’ là: \( {{V}_{ABC.A’B’C’}}={{S}_{\Delta ABC}}.A’H=\frac{{{a}^{2}}\sqrt{3}}{4}.\frac{3a}{2}=\frac{3{{a}^{3}}\sqrt{3}}{8} \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!