Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, trên cạnh SA lấy điểm M và đặt \( \frac{SM}{SA}=x \). Giá trị x để mặt phẳng (MBC) chia khối chóp đã cho thành hai phần có thể tích bằng nhau là:
A. \( x=\frac{1}{2} \)
B. \( x=\frac{\sqrt{5}-1}{2} \)
C. \( x=\frac{\sqrt{5}}{3} \)
D. \( x=\frac{\sqrt{5}-1}{3} \)
Hướng dẫn giải:
Đáp án B.
Ta có: \( \left\{ \begin{align} & BC//(SAD) \\ & BC\subset (BMC) \\ \end{align} \right.\Rightarrow (SAD)\cap (BMC)=MN//BC \) \( \Rightarrow \frac{SM}{SA}=\frac{SN}{SD}=x \)
\( \frac{{{V}_{S.MBC}}}{{{V}_{S.ABC}}}=\frac{2{{V}_{S.MBC}}}{V}=\frac{SM}{SA}=x \)
\( \frac{{{V}_{S.MCN}}}{{{V}_{S.ACD}}}=\frac{2{{V}_{S.MCN}}}{V}=\frac{SM}{SA}.\frac{SN}{SD}={{x}^{2}} \)
\( \Rightarrow \frac{2\left( {{V}_{S.MCN}}+{{V}_{S.MBC}} \right)}{V}=x+{{x}^{2}} \) \( \Leftrightarrow \frac{2V{{S}_{.MBCN}}}{V}=x+{{x}^{2}}\Leftrightarrow \frac{{{V}_{S.MBCN}}}{V}=\frac{x+{{x}^{2}}}{2} \) (1)
Mặt phẳng (MBC) chia khối chóp đã cho thành hai phần có thể tích bằng nhau nên \(\frac{{{V}_{S.MBCN}}}{V}=\frac{1}{2}\) (2)
Từ (1) và (2), ta có: \( 1=x+{{x}^{2}}\Leftrightarrow x=\frac{\sqrt{5}-1}{2} \)
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!