Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng \( \frac{7}{13} \) lần phần còn lại. Tính tỉ số \( k=\frac{IA}{IS} \)?
A. \( \frac{1}{2} \)
B. \( \frac{2}{3} \)
C. \( \frac{1}{3} \)
D. \( \frac{3}{4} \)
Hướng dẫn giải:
Đáp án B.
Mặt phẳng (MNI) cắt khối chóp theo thiết diện như hình 1.
Đặt \( {{V}_{S.ABCD}}=V \).
Ta có: \( {{S}_{\Delta APM}}={{S}_{\Delta BMN}}=\frac{1}{4}{{S}_{\Delta ABC}}=\frac{1}{8}{{S}_{ABCD}} \) \( \Rightarrow \frac{{{S}_{\Delta APM}}}{{{S}_{ABCD}}}=\frac{1}{8} \)
\( \frac{{{d}_{\left( I,(ABCD) \right)}}}{{{d}_{\left( S,(ABCD) \right)}}}=\frac{IA}{SA}=\frac{k}{k+1} \)
\(\Rightarrow \frac{{{V}_{I.APM}}}{{{V}_{S.ABCD}}}=\frac{{{S}_{\Delta APM}}}{{{S}_{ABCD}}}.\frac{{{d}_{\left( I,(ABCD) \right)}}}{{{d}_{\left( S,(ABCD) \right)}}}=\frac{k}{8\left( k+1 \right)}\)\(\Rightarrow {{V}_{I.APM}}=\frac{k}{8\left( k+1 \right)}V\)
Do MN // AC \( \Rightarrow \)IK // AC \( \Rightarrow \) IK // (ABCD) \( \Rightarrow \) d(I,(ABCD)) = d(K,(ABCD)).
Mà \({{S}_{\Delta APM}}={{S}_{\Delta NCQ}}\)\(\Rightarrow {{V}_{I.APM}}={{V}_{K.NCQ}}=\frac{k}{8(k+1)}V\)
Kẻ IH // SD ( \( H\in SD \)) như hình 2.
Ta có:
\( \frac{IH}{SD}=\frac{AH}{AD}=\frac{AI}{AS}=\frac{k}{k+1} \)
\( \frac{IH}{ED}=\frac{PH}{PD}=\frac{PA}{PD}+\frac{AH}{PD}=\frac{PA}{PD}+\frac{2AH}{3AD} \) \( =\frac{1}{3}+\frac{2k}{3(k+1)}=\frac{3k+1}{3(k+1)} \)
\( \Rightarrow \frac{ED}{SD}=\frac{IH}{SD}:\frac{ID}{ED}=\frac{3k}{3k+1} \) \( \Rightarrow \frac{{{d}_{\left( E,(ABCD) \right)}}}{{{d}_{\left( S,(ABCD) \right)}}}=\frac{ED}{SD}=\frac{3k}{3k+1} \)
\( \frac{{{S}_{\Delta PQD}}}{{{S}_{ABCD}}}=\frac{9}{8}\Rightarrow \frac{{{V}_{E.PQD}}}{{{V}_{S.ABCD}}}=\frac{27k}{24k+8} \) \( \Rightarrow {{V}_{E.PQD}}=\frac{27k}{24k+8}V \)
\( {{V}_{EIKAMNCD}}=\frac{13}{20}V\Leftrightarrow {{V}_{E.PDC}}-{{V}_{I.APM}}-{{V}_{K.NQC}}=\frac{13}{20}V \)
\(\Leftrightarrow \frac{27k}{8(3k+1)}V-\frac{k}{8(k+1)}V-\frac{k}{8(k+1)}V=\frac{13}{20}V\)
\(\Leftrightarrow \frac{27k}{2(3k+1)}-\frac{k}{k+1}=\frac{13}{5}\Leftrightarrow k=\frac{2}{3}\)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!