Cho khối chóp S.ABCD có đáy là hình bình hành. Gọi M, N là hai điểm nằm trên hai cạnh SC, SD sao cho \( \frac{SM}{SC}=\frac{1}{2},\frac{SN}{ND}=2 \), biết G là trọng tâm tam giác SAB. Tỉ số thể tích \( \frac{{{\text{V}}_{\text{G}\text{.}MND}}}{{{V}_{S.ABCD}}}=\frac{m}{n} \), m, n là các số nguyên dương. Giá trị của m + n bằng
A. 17
B. 19
C. 21
D. 7
Hướng dẫn giải:
Đáp án B.
\( {{S}_{\Delta DMN}}=\frac{1}{3}{{S}_{\Delta SMD}}=\frac{1}{6}{{S}_{\Delta SCD}} \)
Gọi E là trung điểm của AB.
\(\Rightarrow {{d}_{\left( G,(DMN) \right)}}=\frac{2}{3}{{d}_{\left( E,(DMN) \right)}}=\frac{2}{3}{{d}_{\left( A,(DMN) \right)}}=\frac{2}{3}{{d}_{\left( A,(SCD) \right)}}\)
\( \Rightarrow {{V}_{G.MND}}=\frac{1}{3}{{S}_{\Delta DMN}}.{{d}_{\left( G,(DMN) \right)}} \) \( =\frac{1}{3}.\frac{1}{6}{{S}_{\Delta SCD}}.\frac{2}{3}d\left( A,(SCD) \right)=\frac{1}{9}{{V}_{S.ACD}}=\frac{1}{18}{{V}_{S.ABCD}} \)
\( \Rightarrow \frac{VG.MND}{VS.ABCD}=\frac{1}{18}\Rightarrow m+n=19 \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!