Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB. Mặt phẳng (MNCD) chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần là (số bé chia số lớn)
A. \(\frac{3}{5}\)
B. \(\frac{3}{4}\)
C. \(\frac{1}{3}\)
D. \(\frac{4}{5}\)
Hướng dẫn giải:
Đáp án A.
Gọi thể tích khối chóp S.ABCD là V, khi đó thể tích khối chóp S.ABC và S.ACD là \( {{V}_{S.ABC}}={{V}_{S.ACD}}=\frac{1}{2}V \).
Ta có: \( \frac{{{V}_{S.MNC}}}{{{V}_{S.ABC}}}=\frac{SM}{SA}.\frac{SN}{SB}.\frac{SC}{SC}=\frac{1}{2}.\frac{1}{2}.1=\frac{1}{4} \) \( \Rightarrow {{V}_{S.MNC}}=\frac{1}{4}{{V}_{S.ABC}}=\frac{1}{4}.\frac{1}{2}V=\frac{1}{8}V \)
\( \frac{{{V}_{S.MCD}}}{{{V}_{S.ACD}}}=\frac{SM}{SA}.\frac{SC}{SC}.\frac{SD}{SD}=\frac{1}{2}.1.1=\frac{1}{2} \) \( \Rightarrow {{V}_{S.MCD}}=\frac{1}{2}{{V}_{S.ACD}}=\frac{1}{2}.\frac{1}{2}V=\frac{1}{4}V \)
Từ đó, suy ra: \( {{V}_{S.MNCD}}={{V}_{S.MNC}}+{{V}_{S.MCD}}=\frac{1}{8}V+\frac{1}{4}V=\frac{3}{8}V \)
\( \Rightarrow {{V}_{MNABCD}}=V-\frac{3}{8}V=\frac{5}{8}V \)
Vậy \( \frac{{{V}_{S.MNCD}}}{{{V}_{MNABCD}}}=\frac{\frac{3}{8}V}{\frac{5}{8}V}=\frac{3}{5} \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!