Cho hình chóp S.ABC có SA = 6, SB = 2, SC = 4, AB=2√10, SBCˆ=900, ASCˆ=1200. Mặt phẳng (P) đi qua B và trung điểm N của SC đồng thời vuông góc với (SAC) cắt SA tại M

Cho hình chóp S.ABC có SA = 6, SB = 2, SC = 4, \( AB=2\sqrt{10} \),  \( \widehat{SBC}={{90}^{0}} \),  \( \widehat{ASC}={{120}^{0}} \). Mặt phẳng (P) đi qua B và trung điểm N của SC đồng thời vuông góc với (SAC) cắt SA tại M. Tính tỉ số thể tích  \( k=\frac{{{V}_{S.BMN}}}{{{V}_{S.ABC}}} \).

A. \( k=\frac{2}{5} \)

B.  \( k=\frac{1}{4} \)      

C.  \( k=\frac{1}{6} \)               

D.  \( k=\frac{2}{9} \)

Hướng dẫn giải:

Đáp án C.

Ta có:

 \( S{{A}^{2}}+S{{B}^{2}}={{6}^{2}}+{{2}^{2}}=40=A{{B}^{2}} \) \( \Rightarrow \widehat{ASB}={{90}^{0}} \)

 \( \Delta SBC  \) vuông tại B  \( \Rightarrow BN=\frac{1}{2}SC=2 \)

 \( \Rightarrow SN=NB=SB=2\Rightarrow \Delta SNB  \) đều.

Gọi D là điểm thuộc cạnh SA sao cho SD = 2, ta có:

 \( D{{B}^{2}}={{2}^{2}}+{{2}^{2}}=8 \)

 \( D{{N}^{2}}={{2}^{2}}+{{2}^{2}}-2.2.2.\cos {{120}^{0}}=12 \)

 \( N{{B}^{2}}=4 \)

 \( \Rightarrow D{{B}^{2}}+N{{B}^{2}}=D{{N}^{2}} \) \( \Rightarrow \Delta DNB \)  vuông tại B.

Gọi H, E lần lượt là trung điểm của DN, NB ta có:

+  \( \left\{ \begin{align}& NB\bot SE \\ & NB\bot HE \\ \end{align} \right. \) \( \Rightarrow NB\bot (SHE)\Rightarrow NB\bot SH \)

+ \(\left\{ \begin{align}& SH\bot DN \\ & SH\bot NB \\ \end{align} \right.\Rightarrow SH\bot (DNB)\)\(\Rightarrow (SDN)\bot (DNB)\Rightarrow D\equiv M\Rightarrow SM=2\)

 \( \Rightarrow k=\frac{{{V}_{S.BMN}}}{{{V}_{S.ABC}}}=\frac{SM}{SA}.\frac{SN}{SC}=\frac{2}{6}.\frac{2}{4}=\frac{1}{6} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *