Cho S.ABCD có AB=5√3, BC=3√3, góc BADˆ=BCDˆ=900, SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng 66√3

Cho S.ABCD có  \( AB=5\sqrt{3} \),  \( BC=3\sqrt{3} \), góc  \( \widehat{BAD}=\widehat{BCD}={{90}^{0}} \), SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng  \( 66\sqrt{3} \), tính cotan của góc giữa mặt phẳng (SBD) và mặt đáy.

A. \( \frac{20\sqrt{273}}{819} \)

B.  \( \frac{\sqrt{91}}{9} \)  

C.  \( \frac{3\sqrt{273}}{20} \)

D.  \( \frac{9\sqrt{91}}{9} \)

Hướng dẫn giải:

Đáp án A.

Ta có:  \( {{V}_{S.ABCD}}=\frac{1}{3}.SA.{{S}_{ABCD}} \) \( \Leftrightarrow 66\sqrt{3}=\frac{1}{3}.9.{{S}_{ABCD}}\Leftrightarrow {{S}_{ABCD}}=44\sqrt{3} \)

Suy ra:  \( \frac{1}{2}AB.AD+\frac{1}{2}BC.CD=44\sqrt{3} \) \( \Leftrightarrow 5AD+3CD=44 \) (1)

Áp dụng định lí Pitago trong 2 tam giác vuông ABD và BCD, ta có:

 \( A{{B}^{2}}+A{{D}^{2}}=B{{D}^{2}}=B{{C}^{2}}+C{{D}^{2}} \) \( \Leftrightarrow C{{D}^{2}}-A{{D}^{2}}=48 \) (2)

Từ (1) và (2) suy ra: \( \left[ \begin{align} & AD=4 \\  & AD=\frac{47}{2} \\ \end{align} \right. \)

 \( AD=\frac{47}{2} \) không thỏa mãn do từ (1) ta có:  \( AD<\frac{44}{5}\Rightarrow AD=4 \).

Trong tam giác ABD, dựng  \( AH\bot BD  \) lại có  \( SA\bot BD\Rightarrow BD\bot SH  \)

Vậy góc giữa (SBD) và đáy là góc  \( \widehat{SHA} \).

Dễ tính:  \( BD=\sqrt{91} \),  \( AH=\frac{AB.AD}{BD}=\frac{20\sqrt{273}}{91} \),  \( \cot \widehat{SHA}=\frac{AH}{SA}=\frac{20\sqrt{273}}{819} \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *