Cho khối chóp tứ giác đều có tất cả các cạnh bằng 2a. Thể tích của khối chóp đã cho bằng

Cho khối chóp tứ giác đều có tất cả các cạnh bằng 2a. Thể tích của khối chóp đã cho bằng:

A. \( \frac{2{{a}^{3}}\sqrt{2}}{3} \)

B.  \( \frac{8{{a}^{3}}}{3} \)             

C.  \( \frac{8{{a}^{3}}\sqrt{2}}{3} \)       

D.  \( \frac{4{{a}^{3}}\sqrt{2}}{3} \)

Hướng dẫn giải:

Đáp án D.

Gọi O là tâm của hình vuông ABCD, ta có: SO  \( \bot  \) (ABCD).

Xét tam giác SOA vuông tại O có SA = 2a,  \( AO=\frac{1}{2}AC=\frac{1}{2}.2a\sqrt{2}=a\sqrt{2} \)

Suy ra:  \( SO=\sqrt{S{{A}^{2}}-A{{O}^{2}}}=\sqrt{{{\left( 2a \right)}^{2}}-{{\left( a\sqrt{2} \right)}^{2}}}=a\sqrt{2} \)

Vậy  \( {{V}_{S.ABCD}}=\frac{1}{3}.SO.{{S}_{ABCD}}=\frac{1}{3}.a\sqrt{2}.{{(2a)}^{2}}=\frac{4{{a}^{3}}\sqrt{2}}{3} \)

 

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *