Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60O. Thể tích V của khối chóp S.ABCD bằng

Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60O. Thể tích V của khối chóp S.ABCD bằng

A. \( V=\frac{{{a}^{3}}\sqrt{3}}{2} \)

B.  \( V=\frac{{{a}^{3}}\sqrt{2}}{2} \)                           

C.  \( V=\frac{{{a}^{3}}\sqrt{3}}{6} \)                           

D.  \( V=\frac{{{a}^{3}}\sqrt{2}}{6} \)

Hướng dẫn giải:

Đáp án C.

Gọi O là tâm của đáy, gọi M là trung điểm của BC.

Ta có:  \( \left\{ \begin{align}  & SO\bot BC \\  & OM\bot BC \\ \end{align} \right.\Rightarrow (SOM)\bot BC \)

Suy ra:  \( \widehat{\left( (SCD),(ABCD) \right)}=\widehat{\left( SM,OM \right)}=\widehat{SMO}={{60}^{0}} \).

Có \(OM=\frac{1}{2}BC=\frac{1}{2}a\), \(SO=OM\tan {{60}^{0}}=\frac{a\sqrt{3}}{2}\).

Thể tích khối chóp S.ABCD là:  \( {{V}_{S.ABCD}}=\frac{1}{3}SO.{{S}_{ABCD}}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.{{a}^{2}}=\frac{{{a}^{3}}\sqrt{3}}{6} \).

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *