Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, AB = AD = a, CD = 2a. Hình chiếu của đỉnh S lên mặt phẳng (ABCD) trùng với trung điểm của BD. Biết thể tích tứ diện SBCD bằng \( \frac{{{a}^{3}}}{\sqrt{6}} \). Khoảng cách từ đỉnh A đến mặt phẳng (SBC) là
A. \(\frac{a\sqrt{3}}{2}\)
B. \(\frac{a\sqrt{2}}{6}\)
C. \(\frac{a\sqrt{3}}{6}\)
D. \(\frac{a\sqrt{6}}{4}\)
Hướng dẫn giải:
Đáp án D.
Gọi M là trung điểm của CD thì ta có ABMD là hình vuông cạnh a do đó \( BC=BD=a\sqrt{2} \)
\( \Rightarrow C{{D}^{2}}=4{{a}^{2}}=B{{C}^{2}}+B{{D}^{2}} \) do đó tam giác BCD vuông cân tại B.
Gọi H là trung điểm của BD thì \( SH\bot (ABCD) \).
Khi \({{V}_{S.BCD}}=\frac{1}{3}SH.\frac{1}{2}BD.BC\)\(\Rightarrow SH=\frac{6.\frac{{{a}^{3}}}{\sqrt{6}}}{2{{a}^{2}}}=\frac{a\sqrt{6}}{2}\)
Hạ \( HI\bot SB \).
Vì ABMD là hình vuông nên H là trung điểm của AM và ta có AMCB là hình bình hành do đó AH // BC
\( \Rightarrow {{d}_{\left( A,(SBC) \right)}}={{d}_{\left( H,(SBC) \right)}}=HI \).
Khi đó: \( \frac{1}{H{{I}^{2}}}=\frac{1}{S{{H}^{2}}}+\frac{1}{H{{B}^{2}}}=\frac{4}{6{{a}^{2}}}+\frac{2}{{{a}^{2}}}=\frac{8}{3{{a}^{2}}} \) \( \Rightarrow HI=\frac{a\sqrt{6}}{4} \) hay \( {{d}_{\left( A,(SBC) \right)}}=\frac{a\sqrt{6}}{4} \).
Các bài toán liên quan
Các bài toán mới!
Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!
Thông Tin Hỗ Trợ Thêm!
- Với đội ngũ gia sư dạy kèm gồm giáo viên và sinh viên ở các trường uy tín nhất, chúng tôi nhận dạy kèm tại nhà và dạy kèm online 1 kèm 1.
- Nhận dạy kèm môn phổ thông: Toán học, Vật lý, Hóa học, Tiếng Anh, Sinh học, Văn học, … các lớp 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, LTDH và các môn ĐH–CĐ: Toán cao cấp, Xác suất thống kê...
- Nhận dạy kèm Tiếng Anh (Giao tiếp, TOEIC, TOEFL, IELTS, ...) - Tiếng Hoa - Tiếng Hàn - Tiếng Nhật (Giao tiếp, chứng chỉ N5, N4, N3, N2, N1), Tin Học (Văn phòng, Đồ họa, Lập trình,...) cho các học viên ở mọi lứa tuổi.
- Nhận dạy kèm các môn năng khiếu: Cờ Vua, Cờ Tướng, Đàn Ghitar, Đàn Dương Cầm,…
- Đ/C Trung Tâm: Số 103/6, Hẻm 528TC, Đường Trường Chinh, Kp. 7, P. Tân Hưng Thuận, Quận 12, Tp. HCM
- Hotline: 094.625.1920 - Thầy Nhân (Zalo)
No comment yet, add your voice below!