Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SC tạo với mặt phẳng (SAB) một góc 30O

(THPTQG – 2017 – 123) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SC tạo với mặt phẳng (SAB) một góc 30O. Tính thể tích khối chóp S.ABCD.

A. \(\frac{2{{a}^{3}}}{3}\)

B. \(\frac{\sqrt{2}{{a}^{3}}}{3}\)

C. \(\frac{\sqrt{6}{{a}^{3}}}{3}\)                               

D. \({{a}^{3}}\sqrt{2}\)

Hướng dẫn giải:

Đáp án B.

Do ABCD là hình vuông cạnh a nên: SABCD = a2.

Chứng minh được  \( BC\bot (SAB) \) \( \Rightarrow \)  góc giữa SC và (SAB) là  \( \widehat{CSB}={{30}^{0}} \)

Đặt SA = a  \( \Rightarrow SB=\sqrt{{{x}^{2}}+{{a}^{2}}} \). Tam giác SBC vuông tại B nên  \( \tan \widehat{CSA}=\tan {{30}^{0}}=\frac{\sqrt{3}}{3}=\frac{BC}{SB} \)

Ta được:  \( SB=BC\sqrt{3}\Leftrightarrow \sqrt{{{x}^{2}}+{{a}^{2}}}=a\sqrt{3}\Rightarrow x=a\sqrt{2} \)

Vậy  \( {{V}_{S.ABCD}}=\frac{1}{3}.SA.{{S}_{ABCD}}=\frac{1}{3}.a\sqrt{2}.{{a}^{2}}=\frac{\sqrt{2}{{a}^{3}}}{3} \)

 

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *