Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a, cạnh bên SA vuông góc với đáy. Tính thể tích V của khối chóp S.ABCD biết góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60O

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a, cạnh bên SA vuông góc với đáy. Tính thể tích V của khối chóp S.ABCD biết góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60O.

A. \( \frac{{{a}^{3}}\sqrt{15}}{15} \)

B.  \( \frac{{{a}^{3}}\sqrt{15}}{6} \)                               

C.  \( \frac{4{{a}^{3}}\sqrt{15}}{15} \)                          

D.  \( \frac{{{a}^{3}}\sqrt{15}}{3} \)

Hướng dẫn giải:

Đáp án C.

Kẻ  \( AE\bot BD  \)

 \( \widehat{\left( (SBD),(ABCD) \right)}=\widehat{SEA}={{60}^{0}} \)

Xét  \( \Delta ABD  \) vuông tại A, ta có:  \( AE=\frac{AD.AB}{\sqrt{A{{D}^{2}}+A{{B}^{2}}}}=\frac{2{{a}^{2}}}{a\sqrt{5}}=\frac{2a\sqrt{5}}{5} \)

Xét  \( \Delta SAE  \) vuông tại A, ta có:

 \( SA=AE.\tan {{60}^{0}}=\frac{2a\sqrt{5}}{5}.\sqrt{3}=\frac{2a\sqrt{15}}{5} \)

Khi đó thể tích S.ABCD

 \( V=\frac{1}{3}SA.{{S}_{ABCD}}=\frac{1}{3}.\frac{2a\sqrt{15}}{5}.2{{a}^{2}}=\frac{4{{a}^{3}}\sqrt{15}}{15} \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *