Trong không gian với hệ trục tọa độ Oxyz, cho phương trình \( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2(m+2)x+4my-2mz+5{{m}^{2}}+9=0 \). Tìm các giá trị của m để phương trình trên là phương trình của một mặt cầu.
A. \( m<-5\vee m>1 \)
B. \( -5<m<1 \)
C. \( m<-5 \)
D. \( m>1 \)
Hướng dẫn giải:
Đáp án A.
Ta có điều kiện xác định mặt cầu là: \( {{a}^{2}}+{{b}^{2}}>{{c}^{2}} \)
\( \Leftrightarrow {{(m+2)}^{2}}+4{{m}^{2}}+{{m}^{2}}-5{{m}^{2}}-9>0\) \( \Leftrightarrow {{m}^{2}}+4m-5>0\Leftrightarrow \left[ \begin{align} & m<-5 \\ & m>1 \\ \end{align} \right. \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!