Gọi x, y các số thực dương thỏa mãn điều kiện log9x=log6y=log4(x+y)

(Lý Nhân Tông – Bắc Ninh – 2020) Gọi x, y các số thực dương thỏa mãn điều kiện \( {{\log }_{9}}x={{\log }_{6}}y={{\log }_{4}}(x+y) \) và  \( \frac{x}{y}=\frac{-a+\sqrt{b}}{2} \), với a, b là hai số nguyên dương. Tính  \( T={{a}^{2}}+{{b}^{2}} \) .

A. T = 26

B. T = 29

C. T = 20                         

D. T = 25

Hướng dẫn giải:

Đáp án A.

Đặt  \( t={{\log }_{9}}x={{\log }_{6}}y={{\log }_{4}}(x+y) \) , ta có: \( \left\{ \begin{align}& x={{9}^{t}} \\ & y={{6}^{t}} \\& x+y={{4}^{t}} \\\end{align} \right.\Rightarrow {{9}^{t}}+{{6}^{t}}={{4}^{t}} \)

 \( \Leftrightarrow {{\left( \frac{3}{2} \right)}^{2t}}+{{\left( \frac{3}{2} \right)}^{t}}-1=0 \) \( \Leftrightarrow \left\{ \begin{align}& {{\left( \frac{3}{2} \right)}^{t}}=\frac{-1-\sqrt{5}}{2}\text{(loại)} \\& {{\left( \frac{3}{2} \right)}^{t}}=\frac{-1+\sqrt{5}}{2} \\\end{align} \right. \)

 \( \Rightarrow {{\left( \frac{3}{2} \right)}^{t}}=\frac{-1+\sqrt{5}}{2} \)

Suy ra:  \( \frac{x}{y}={{\left( \frac{9}{6} \right)}^{t}}={{\left( \frac{3}{2} \right)}^{t}}=\frac{-1+\sqrt{5}}{2}=\frac{-a+\sqrt{b}}{2} \)

 \( \Rightarrow \left\{ \begin{align}& a=1 \\& b=5 \\\end{align} \right.\Rightarrow T={{a}^{2}}+{{b}^{2}}={{1}^{2}}+{{5}^{2}}=26 \)

 

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *