Phương trình ${{4}^{x}}+1={{2}^{x}}.m.\cos \left( \pi x \right)$ có nghiệm duy nhất. Số giá trị của tham số m thỏa mãn là
A. vô số
B. 1
C. 2
D. 0
Hướng dẫn giải:
Đáp án B.
Ta có: ${{4}^{x}}+1={{2}^{x}}.m.\cos \left( \pi x \right)$ $\Leftrightarrow {{2}^{x}}+{{2}^{-x}}=m\cos \left( \pi x \right)$
Ta thấy nếu $x={{x}_{O}}$ là một nghiệm của phương trình thì $x=-{{x}_{O}}$ cũng là nghiệm của phương trình nên để phương trình có nghiệm duy nhất thì xO = 0.
Với xO = 0 là nghiệm của phương trình thì m = 2.
Thử lại: Với m = 2 ta được phương trình: ${{2}^{x}}+{{2}^{-x}}=m\cos \left( \pi x \right)$ (*)
$VT\ge 2;VP\le 2$ nên (*)$\Rightarrow \left\{ \begin{align}& {{2}^{x}}+{{2}^{-2}}=2 \\ & 2\cos \left( \pi x \right)=2 \\\end{align} \right.\Leftrightarrow x=0$ thỏa mãn.
Vậy m = 2
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!