Hỏi phương trình \( {{3.2}^{x}}+{{4.3}^{x}}+{{5.4}^{x}}={{6.5}^{x}} \) có tất cả bao nhiêu nghiệm thực?
A. 0.
B. 1.
C. 3.
D. 2.
Hướng dẫn giải:
Chọn B
Ta có: \( {{3.2}^{x}}+{{4.3}^{x}}+{{5.4}^{x}}={{6.5}^{x}}\Leftrightarrow 3{{\left( \frac{2}{5} \right)}^{x}}+4{{\left( \frac{3}{5} \right)}^{x}}+5{{\left( \frac{4}{5} \right)}^{x}}-6=0 \).
Xét hàm số \( f(x)=3{{\left( \frac{2}{5} \right)}^{x}}+4{{\left( \frac{3}{5} \right)}^{x}}+5{{\left( \frac{4}{5} \right)}^{x}}-6,\,\,\forall x\in \mathbb{R} \).
Có \( {f}'(x)=3{{\left( \frac{2}{5} \right)}^{x}}\ln \frac{2}{5}+4{{\left( \frac{3}{5} \right)}^{x}}\ln \frac{3}{5}+5{{\left( \frac{4}{5} \right)}^{x}}\ln \frac{4}{5}<0,\,\,\forall x\in \mathbb{R} \) nên hàm số f(x) nghịch biến trên \( \mathbb{R} \) suy ra phương trình f(x) = 0 có nhiều nhất một nghiệm (1).
Mặt khác: \( f(1).f(2)=\frac{8}{5}.\left( -\frac{22}{25} \right)=-\frac{176}{125}<0 \) nên phương trình có ít nhất một nghiệm thuộc khoảng (1;2) (2)
Từ (1) và (2) suy ra phương trình đã cho có nghiệm duy nhất.
Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Toán - Lý - Hóa từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!