Hỏi phương trình 3.2^x+4.3^x+5.4^x=6.5^x có tất cả bao nhiêu nghiệm thực

Hỏi phương trình \( {{3.2}^{x}}+{{4.3}^{x}}+{{5.4}^{x}}={{6.5}^{x}} \) có tất cả bao nhiêu nghiệm thực?

A. 0.

B. 1.

C. 3.                                  

D. 2.

Hướng dẫn giải:

Chọn B

Ta có:  \( {{3.2}^{x}}+{{4.3}^{x}}+{{5.4}^{x}}={{6.5}^{x}}\Leftrightarrow 3{{\left( \frac{2}{5} \right)}^{x}}+4{{\left( \frac{3}{5} \right)}^{x}}+5{{\left( \frac{4}{5} \right)}^{x}}-6=0 \).

Xét hàm số  \( f(x)=3{{\left( \frac{2}{5} \right)}^{x}}+4{{\left( \frac{3}{5} \right)}^{x}}+5{{\left( \frac{4}{5} \right)}^{x}}-6,\,\,\forall x\in \mathbb{R} \).

Có  \( {f}'(x)=3{{\left( \frac{2}{5} \right)}^{x}}\ln \frac{2}{5}+4{{\left( \frac{3}{5} \right)}^{x}}\ln \frac{3}{5}+5{{\left( \frac{4}{5} \right)}^{x}}\ln \frac{4}{5}<0,\,\,\forall x\in \mathbb{R} \) nên hàm số f(x) nghịch biến trên  \( \mathbb{R} \) suy ra phương trình f(x) = 0 có nhiều nhất một nghiệm (1).

Mặt khác:  \( f(1).f(2)=\frac{8}{5}.\left( -\frac{22}{25} \right)=-\frac{176}{125}<0 \) nên phương trình có ít nhất một nghiệm thuộc khoảng (1;2)  (2)

Từ (1) và (2) suy ra phương trình đã cho có nghiệm duy nhất.

Nhận Dạy Kèm Toán - Lý - Hóa Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *