Biết rằng m = mO là giá trị của tham số m sao cho phương trình 9^x-2(2m+1).3^x+3(4m-1)=0 có hai nghiệm thực x1, x2 thỏa mãn

Biết rằng m = mO là giá trị của tham số m sao cho phương trình ${{9}^{x}}-2(2m+1){{.3}^{x}}+3(4m-1)=0$ có hai nghiệm thực x1, x2 thỏa mãn $\left( {{x}_{1}}+2 \right)\left( {{x}_{2}}+2 \right)=12$. Khi đó mO thuộc khoảng nào sau đây?

A. (3;9)

B. $\left( 9;+\infty \right)$                                       

C. (1;3)             

D. $\left( -2;0 \right)$

Hướng dẫn giải:

Đáp án C.

${{9}^{x}}-2(2m+1){{.3}^{x}}+3(4m-1)=0$ (1)

Đặt $t={{3}^{x}},t>0$, phương trình (1) trở thành:

${{t}^{2}}-2(2m+1)t+3(4m-1)=0$ \( \Leftrightarrow \left[ \begin{align} & t=3 \\& t=4m-1 \\\end{align} \right. \)

Để phương trình (1) có 2 nghiệm thì điều kiện cần và đủ là: $4m-1>0\Leftrightarrow m>\frac{1}{4}$

Khi đó phương trình (1) có hai nghiệm x1 = 1 và ${{x}_{2}}={{\log }_{3}}\left( 4m-1 \right)$.

Từ giả thiết $\left( {{x}_{1}}+2 \right)\left( {{x}_{2}}+2 \right)=12$\(\Leftrightarrow 3\left( {{\log }_{3}}(4m-1)+2 \right)=12\Leftrightarrow {{\log }_{3}}(4m-1)=2\)

\(\Leftrightarrow m=\frac{1}{4}.\left( {{3}^{2}}+1 \right)=\frac{5}{2}\)

Vậy \(m\in \left( 1;3 \right)\).

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *