Trong không gian Oxyz, cho hai đường thẳng d1:(x−3)/−1=(y−3)/−2=(z+2)/1; d2:(x−5)/−3=(y+1)/2=(z−2)/1 và mặt phẳng (P): x+2y+3z−5=0. Đường thẳng vuông góc với (P), cắt d1 và d2 có phương trình là

(Đề tham khảo – 2018) Trong không gian Oxyz, cho hai đường thẳng \( {{d}_{1}}:\frac{x-3}{-1}=\frac{y-3}{-2}=\frac{z+2}{1} \);  \( {{d}_{2}}:\frac{x-5}{-3}=\frac{y+1}{2}=\frac{z-2}{1} \) và mặt phẳng (P):  \( x+2y+3z-5=0 \). Đường thẳng vuông góc với (P), cắt d1 và d2 có phương trình là:

A. \( \frac{x-1}{3}=\frac{y+1}{2}=\frac{z}{1} \)

B.  \( \frac{x-2}{1}=\frac{y-3}{2}=\frac{z-1}{3} \)    

C.  \( \frac{x-3}{1}=\frac{y-3}{2}=\frac{z+2}{3} \)   

D.  \( \frac{x-1}{1}=\frac{y+1}{2}=\frac{z}{3} \)

Hướng dẫn giải:

Đáp án D.

Phương trình  \( {{d}_{1}}:\left\{ \begin{align} & x=3-{{t}_{1}} \\  & y=3-2{{t}_{1}} \\  & z=-2+{{t}_{1}} \\ \end{align} \right. \) và  \( {{d}_{2}}:\left\{ \begin{align}  & x=5-3{{t}_{2}} \\  & y=-1+2{{t}_{2}} \\  & z=2+{{t}_{2}} \\ \end{align} \right. \).

Gọi đường thẳng cần tìm là  \( \Delta  \).

Giả sử đường thẳng  \( \Delta  \)cắt đường thẳng d1 và d2 lần lượt tại A, B.

Gọi  \( A(3-{{t}_{1}};3-2{{t}_{1}};-2+{{t}_{1}}) \),  \( B(5-3{{t}_{2}};-1+2{{t}_{2}};2+{{t}_{2}}) \).

 \( \overrightarrow{AB}=(2-3{{t}_{2}}+{{t}_{1}};-4+2{{t}_{2}}+2{{t}_{1}};4+{{t}_{2}}-{{t}_{1}}) \).

Vectơ pháp tuyến của (P) là  \( \vec{n}=(1;2;3) \).

Do  \( \overrightarrow{AB} \) và  \( \vec{n} \) cùng phương nên  \( \frac{2-3{{t}_{2}}+{{t}_{1}}}{1}=\frac{-4+2{{t}_{2}}+2{{t}_{1}}}{2}=\frac{4+{{t}_{2}}-{{t}_{1}}}{3} \).

 \( \Leftrightarrow \left\{ \begin{align} & \frac{2-3{{t}_{2}}+{{t}_{1}}}{1}=\frac{-4+2{{t}_{2}}+2{{t}_{1}}}{2} \\  & \frac{-4+2{{t}_{2}}+2{{t}_{1}}}{2}=\frac{4+{{t}_{2}}-{{t}_{1}}}{3} \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align} & {{t}_{1}}=2 \\  & {{t}_{2}}=1 \\ \end{align} \right. \)

Do đó, A(1;-1;0), B(2;-1;3).

Phương trình đường thẳng  \( \Delta  \) đi qua A(1;-1;0) và có vectơ chỉ phương  \( \vec{n}=(1;2;3) \) là:  \( \frac{x-1}{1}=\frac{y+1}{2}=\frac{z}{3} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *