Có tất cả bao nhiêu giá trị của tham số m để bất phương trình \( {{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right) \) nghiệm đúng với \( \forall x\in \mathbb{R} \).
A. 2
B. 4
C. 3
D. 1
Hướng dẫn giải:
Đáp án D.
Ta thấy \( {{x}^{2}}+2>0,\forall x\in \mathbb{R} \)
Do đó bất phương trình \({{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right)\)
\(\Leftrightarrow {{x}^{2}}+mx+m+2\ge {{x}^{2}}+2\Leftrightarrow mx+m\ge 0\)
Bất phương trình \( {{\log }_{2}}\left( {{x}^{2}}+mx+m+2 \right)\ge {{\log }_{2}}\left( {{x}^{2}}+2 \right) \) nghiệm đúng với \( \forall x\in \mathbb{R} \) khi và chỉ khi \( mx+m\ge 0,\forall x\in \mathbb{R}\Leftrightarrow m=0 \).
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!