Cho hình lăng trụ đứng ABC.A’B’C’, biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A’BC) bằng \( \frac{1}{6}a \). Tính thể tích khối lăng trụ ABC.A’B’C’.
A. \( \frac{3{{a}^{3}}\sqrt{2}}{8} \)
B. \( \frac{3{{a}^{3}}\sqrt{2}}{28} \)
C. \( \frac{3{{a}^{3}}\sqrt{2}}{4} \)
D. \( \frac{3{{a}^{3}}\sqrt{2}}{16} \)
Hướng dẫn giải:
Đáp án D.
Diện tích đáy: \( {{S}_{\Delta ABC}}=\frac{\sqrt{3}}{4}{{a}^{2}} \)
Chiều cao: \({{d}_{\left( (ABC),(A’B’C’) \right)}}=AA’\)
Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên lên A’I ta có: AH \( \bot \) (A’BC) \( \Rightarrow {{d}_{\left( A,(A’BC) \right)}}=AH \)
\( \frac{{{d}_{\left( O,(A’BC) \right)}}}{{{d}_{\left( A,(A’BC) \right)}}}=\frac{IO}{IA}=\frac{1}{3} \) \( \Rightarrow {{d}_{\left( O,(A’BC) \right)}}=\frac{{{d}_{\left( A,(A’BC) \right)}}}{3}=\frac{AH}{3}=\frac{a}{6} \)
\( \Rightarrow AH=\frac{a}{2} \)
Xét tam giác A’AI vuông tại A, ta có:
\( \frac{1}{A{{H}^{2}}}=\frac{1}{AA{{‘}^{2}}}+\frac{1}{A{{I}^{2}}}\Rightarrow \frac{1}{AA{{‘}^{2}}}=\frac{1}{A{{H}^{2}}}-\frac{1}{A{{I}^{2}}} \) \( \Rightarrow AA’=\frac{a\sqrt{3}}{2\sqrt{2}} \)
Vậy \( {{V}_{ABC.A’B’C’}}={{S}_{\Delta ABC}}.AA’=\frac{{{a}^{2}}\sqrt{3}}{4}.\frac{a\sqrt{3}}{2\sqrt{2}}=\frac{3{{a}^{3}}\sqrt{2}}{16} \)
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!