Cho khối lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy là và khoảng cách từ A đến mặt phẳng (A’BC) bằng 1/2a

Cho khối lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy là và khoảng cách từ A đến mặt phẳng (A’BC) bằng \( \frac{1}{2}a  \). Thể tích của khối lăng trụ bằng:

A. \( \frac{3\sqrt{2}{{a}^{3}}}{12} \)

B.  \( \frac{\sqrt{2}{{a}^{3}}}{16} \)                               

C.  \( \frac{3\sqrt{2}{{a}^{3}}}{16} \)                            

D.  \( \frac{3\sqrt{2}{{a}^{3}}}{48} \)

Hướng dẫn giải:

Đáp án C.

Gọi I là trung điểm của BC và H là hình chiếu vuông góc của A lên A’I.

Khi đó, ta có:  \( {{d}_{\left( A,(A’BC) \right)}}=AH=\frac{1}{2}a  \).

Trong tam giác vuông AA’I, ta có:

 \( \frac{1}{A{{H}^{2}}}=\frac{1}{AA{{‘}^{2}}}+\frac{1}{A{{I}^{2}}}\Rightarrow \frac{1}{AA{{‘}^{2}}}=\frac{1}{A{{H}^{2}}}-\frac{1}{A{{I}^{2}}} \)  \( =\frac{1}{{{\left( \frac{a}{2} \right)}^{2}}}-\frac{1}{{{\left( \frac{a\sqrt{3}}{2} \right)}^{2}}}=\frac{4}{{{a}^{2}}}-\frac{4}{3{{a}^{2}}}=\frac{8}{3{{a}^{2}}} \)

Suy ra:  \( AA’=\frac{a\sqrt{6}}{4} \)

Thể tích khối lăng trụ là:  \( V={{S}_{\Delta ABC}}.AA’=\frac{{{a}^{2}}\sqrt{3}}{4}.\frac{a\sqrt{6}}{4}=\frac{3{{a}^{3}}\sqrt{2}}{16} \)

 

Các bài toán liên quan

 

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *