Cho hàm số f(x)=2x+e^x. Tìm một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 2019

Cho hàm số \( f(x)=2x+{{e}^{x}} \). Tìm một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 2019.

A. \( F(x)={{x}^{2}}+{{e}^{x}}+2018 \)

B.  \( F(x)={{x}^{2}}+{{e}^{x}}-2018 \)              

C.  \( F(x)={{x}^{2}}+{{e}^{x}}+2017 \)                    

D.  \( F(x)={{x}^{2}}+{{e}^{x}}-2019 \)

Hướng dẫn giải:

Đáp án A.

Ta có:  \( \int{f(x)dx}=\int{\left( 2x+{{e}^{x}} \right)dx}={{x}^{2}}+{{e}^{x}}+C  \)

Có F(x) là một nguyên hàm của f(x) và F(0) = 2019.

Suy ra  \( \left\{ \begin{align} & F(x)={{x}^{2}}+{{e}^{x}}+C \\  & F(0)=2019 \\ \end{align} \right. \)

 \( \Rightarrow 1+C=2019\Leftrightarrow C=2018 \)

Vậy  \( F(x)={{x}^{2}}+{{e}^{x}}+2018 \).

 

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *