Trong không gian Oxyz, cho đường thẳng Δ:x/1=(y+1)/2=(z−1)/1 và mặt phẳng (P):x−2y−z+3=0. Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với Δ có phương trình là

(THPTQG – 2018 – 104) Trong không gian Oxyz, cho đường thẳng \( \Delta :\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{1} \) và mặt phẳng  \( (P):x-2y-z+3=0 \). Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với  \( \Delta  \) có phương trình là:

A. \( \left\{ \begin{align} & x=1+2t \\ & y=1-t \\  & z=2 \\ \end{align} \right. \)

B.  \( \left\{ \begin{align}  & x=-3 \\  & y=-t \\  & z=2t \\ \end{align} \right. \)          

C.  \( \left\{ \begin{align} & x=1+t \\ & y=1-2t \\ & z=2+3t \\ \end{align} \right. \)

D.  \( \left\{ \begin{align}  & x=1 \\  & y=1-t \\  & z=2+2t \\ \end{align} \right. \)

Hướng dẫn giải:

Đáp án D.

Ta có:  \( \Delta :\left\{ \begin{align}  & x=t \\  & y=-1+2t \\  & z=1+t \\ \end{align} \right. \)

Gọi  \( M=\Delta \cap (P)\Rightarrow M\in \Delta \Rightarrow M(t;2t-1;t+1) \)

 \( M\in (P)\Rightarrow t-2(2t-1)-(t+1)+3=0 \)

 \( \Leftrightarrow 4-4t=0\Leftrightarrow t=1\Rightarrow M(1;1;2) \)

Vectơ pháp tuyến của mặt phẳng (P) là  \( \vec{n}=(1;-2;-1) \).

Vectơ chỉ phương của đường thẳng  \( \Delta  \) là  \( \vec{u}=(1;2;1) \).

Đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với  \( \Delta  \)

 \( \Rightarrow  \) Đường thẳng d nhận \({{\vec{u}}_{d}}=\left[ \vec{n},\vec{u} \right]=(0;-2;4)=2(0;-1;2)\) làm vectơ chỉ phương và \(M(1;1;2)\in d\).

 \( \Rightarrow  \) Phương trình đường thẳng  \( d:\left\{ \begin{align} & x=1 \\  & y=1-t \\  & z=2+2t \\ \end{align} \right. \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *