Cho F(x) là một nguyên hàm của hàm số f(x)=1/cos^2x. Biết F(π/4+kπ)=k, ∀k∈Z. Tính F(0)+F(π)+F(2π)+…+F(10π)

Cho F(x) là một nguyên hàm của hàm số \( f(x)=\frac{1}{{{\cos }^{2}}x} \). Biết \( F\left( \frac{\pi }{4}+k\pi  \right)=k,\text{ }\forall k\in \mathbb{Z} \). Tính  \( F(0)+F(\pi )+F(2\pi )+…+F(10\pi ) \).

A. 55

B. 44

C. 45                          

D. 0

Hướng dẫn giải:

Đáp án B.

Ta có:  \( \int{f(x)dx}=\int{\frac{1}{{{\cos }^{2}}x}dx}=\tan x+C  \)

Suy ra: \(F(x)=\left\{ \begin{align}  & \tan x+{{C}_{0}},x\in \left( -\frac{\pi }{2};\frac{\pi }{2} \right) \\  & \tan x+{{C}_{1}},x\in \left( \frac{\pi }{2};\frac{3\pi }{2} \right) \\  & \tan x+{{C}_{2}},x\in \left( \frac{3\pi }{2};\frac{5\pi }{2} \right) \\  & … \\  & \tan x+{{C}_{9}},x\in \left( \frac{17\pi }{2};\frac{19\pi }{2} \right) \\  & \tan x+{{C}_{10}},x\in \left( \frac{19\pi }{2};\frac{21\pi }{2} \right) \\ \end{align} \right.\)\(\Rightarrow \left\{ \begin{align}  & F\left( \frac{\pi }{4}+0\pi  \right)=1+{{C}_{0}}=0\Rightarrow {{C}_{0}}=-1 \\  & F\left( \frac{\pi }{4}+\pi  \right)=1+{{C}_{1}}=1\Rightarrow {{C}_{0}}=0 \\  & F\left( \frac{\pi }{4}+2\pi  \right)=1+{{C}_{2}}=2\Rightarrow {{C}_{0}}=1 \\  & … \\  & F\left( \frac{\pi }{4}+9\pi  \right)=1+{{C}_{9}}=9\Rightarrow {{C}_{9}}=8 \\  & F\left( \frac{\pi }{4}+10\pi  \right)=1+{{C}_{10}}=10\Rightarrow {{C}_{10}}=9 \\ \end{align} \right.\)

Vậy  \( F(0)+F(\pi )+F(2\pi )+…+F(10\pi ) \) \( =\tan 0-1+\tan \pi +\tan 2\pi +1+…+\tan 10\pi +9=44 \)

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *