Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y=1/(2f(x)−1)

Cho hàm số y = f(x) có bảng biến thiên như hình dưới đây:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số  \( y=\frac{1}{2f(x)-1} \) là

A. 0                          

B. 1                                   

C. 2                                   

D. 3

Hướng dẫn giải:

Đáp án D.

Số tiệm cận đứng của đồ thị hàm số  \( y=\frac{1}{2f(x)-1} \) đúng bằng số nghiệm thực của phương trình \(2f(x)-1=0\Leftrightarrow f(x)=\frac{1}{2}\).

Mà số nghiệm thực của phương trình \(f(x)=\frac{1}{2}\) bằng số giao điểm của đồ thị hàm số y = f(x) với đường thẳng  \( y=\frac{1}{2} \).

Dựa vào bảng biến thiên ta thấy đường thẳng  \( y=\frac{1}{2} \) cắt đồ thị hàm số y = f(x) tại 2 điểm phân biệt.

Vậy đồ thị hàm số  \( y=\frac{1}{2f(x)-1} \) có 2 tiệm cận đứng.

Lại có  \( \underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{1}{2f(x)-1}=1 \) \( \Rightarrow \)  đồ thị hàm số có một tiệm cận ngang là y = 1.

Vậy tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \( y=\frac{1}{2f(x)-1} \) là 3.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *