Cho hàm số \(y=f(x)\) thỏa mãn \( \mathop {\lim }\limits_{x\rightarrow -\infty} f(x)=-1 \) và \( \mathop {\lim }\limits_{x\rightarrow +\infty} f(x)=m \). Có bao nhiêu giá trị thực của tham số m để hàm số \(y=\frac{1}{f(x)+2}\) có duy nhất một tiệm cận ngang.
A. 1
B. 0
C. 2
D. Vô số
Hướng dẫn giải:
Đáp án C.
Ta có: \( \mathop {\lim }\limits_{x\rightarrow -\infty} y= \mathop {\lim }\limits_{x\rightarrow -\infty} \frac{1}{f(x)+2}=1\) \(\Rightarrow \) Đồ thị hàm số có tiệm cận ngang \(y=1\).
Trường hợp 1: Nếu \( m=-1 \) thì \(\underset{x\to -\infty }{\mathop{\lim }}\,\frac{1}{f(x)+2}=1\) và \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{f(x)+2}=1\) thì đồ thị hàm số có một tiệm cận.
Trường hợp 2: Nếu \( m\ne -1 \)
Để đồ thị hàm số có 1 tiệm cận ngang \(\Leftrightarrow \underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{f(x)+2}\Leftrightarrow m+2=0\Leftrightarrow m=-2\)
Vậy khi \(m\in \left\{ -2;-1 \right\}\) thì đồ thị hàm số có duy nhất một tiệm cận ngang.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!