Cho hàm số f(x) xác định và liên tục trên \( \mathbb{R}\backslash \left\{ -1 \right\} \) có bảng biến thiên như sau:
Hỏi đồ thị hàm số \( y=\frac{1}{f(x)} \) có tất cả bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 4
B. 3
C. 2
D. 1
Hướng dẫn giải:
Đáp án A.
Ta có: \( \left\{ \begin{align}& \underset{x\to -\infty }{\mathop{\lim }}\,f(x)=2\Rightarrow \underset{x\to -\infty }{\mathop{\lim }}\,\frac{1}{f(x)}=\frac{1}{2} \\ & \underset{x\to +\infty }{\mathop{\lim }}\,f(x)=-2\Rightarrow \underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{f(x)}=-\frac{1}{2} \\ \end{align} \right. \)
Suy ra đồ thị hàm số \( y=\frac{1}{f(x)} \) có hai đường tiệm cận ngang là \( y=\frac{1}{2} \) và \( y=-\frac{1}{2} \).
Dựa vào bảng biến thiên của hàm số y = f(x), ta thấy: phương trình f(x) = 0 có hai nghiệm phân biệt \( {{x}_{1}}<-1<{{x}_{2}} \)
Khi đó: \( f({{x}_{1}})=f({{x}_{2}})=0 \)
Ta có: \( \left\{ \begin{align}& \underset{x\to x_{1}^{-}}{\mathop{\lim }}\,f(x)=0 \\ & f(x)>0\text{ }khi\text{ }x\to x_{1}^{-} \\ \end{align} \right.\Rightarrow \underset{x\to x_{1}^{-}}{\mathop{\lim }}\,\frac{1}{f(x)}=+\infty \) và \( \left\{ \begin{align}& \underset{x\to x_{2}^{-}}{\mathop{\lim }}\,f(x)=0 \\ & f(x)>0\text{ }khi\text{ }x\to x_{2}^{-} \\ \end{align} \right.\Rightarrow \underset{x\to x_{2}^{-}}{\mathop{\lim }}\,\frac{1}{f(x)}=+\infty \)
Vậy đồ thị hàm số \( y=\frac{1}{f(x)} \) có hai tiệm cận đứng là đường thẳng x = x1 và x = x2.
Vậy có tổng 4 đường tiệm cận.
Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...
- Dạy kèm online tương tác 1 thầy 1 trò! Hỗ trợ trực tuyến 24/7
- Dạy kèm Môn Toán từ lớp 6 ➜ 12 - Ôn thi Đại Học - Cao Đẳng
- Bồi dưỡng ôn thi HSG các cấp - Luyện Thi vào lớp 10 khối Chuyên
- Lịch học sắp xếp sáng - chiều - tối, tất cả các buổi từ thứ 2 ➜ CN
- Thời lượng học 1,5h - 2h/1 buổi!
- Học phí giá rẻ - bình dân!
- Đóng 3 tháng tặng 1 tháng
No comment yet, add your voice below!