Số giá trị nguyên dương của tham số m để bất phương trình 9^√(x^2−3x+m)+2.3^√(x^2−3x+m)3^(2x−3) có nghiệm

Số giá trị nguyên dương của tham số m để bất phương trình \( {{9}^{\sqrt{{{x}^{2}}-3x+m}}}+{{2.3}^{\sqrt{{{x}^{2}}-3x+m}}}<{{3}^{2x-3}} \) có nghiệm là

A. 4

B. 8

C. 1                                   

D. 6

Hướng dẫn giải:

Đáp án C.

Đặt  \( t={{3}^{\sqrt{{{x}^{2}}-3x+m}-x}} \) với t > 0, bất phương trình đã cho trở thành  \( {{t}^{2}}+\frac{2}{9}t-\frac{1}{27}<0\Leftrightarrow -3<t<\frac{1}{9} \).

Do đó:  \( 0<t<\frac{1}{9}\Leftrightarrow \sqrt{{{x}^{2}}-3x+m}-x<-2 \) \( \Leftrightarrow \sqrt{{{x}^{2}}-3x+m}

\( \Leftrightarrow \left\{ \begin{align} & x>0 \\  & {{x}^{2}}-3x+m\ge 0 \\ & {{x}^{2}}-3x+m<{{x}^{2}}-4x+4 \\ \end{align} \right. \) \( \Leftrightarrow \left\{ \begin{align}& x>2 \\  & {{x}^{2}}-3x+m\ge 0 \\  & x<4-m \\ \end{align} \right.\text{ }\left( I \right) \).

Để bất phương trình đề bài cho có nghiệm thì hệ bất phương trình (I) có nghiệm ta đặt

\( \left\{ \begin{align} & x>2\text{ }(1) \\ & {{x}^{2}}-3x+m\ge 0\text{ }(2) \\  & x<4-m\text{ }(3) \\ \end{align} \right. \)

Điều kiện cần: Từ (1) và (3), ta có:  \( 4-m>2\Leftrightarrow m<2 \)

Do m là số nguyên dương nên m = 1.

Điều kiện đủ: Với m = 1, hệ bất phương trình (I) trở thành  \( \left\{ \begin{align} & x>2 \\  & {{x}^{2}}-3x+1\ge 0 \\  & x<3 \\ \end{align} \right. \)

\( \Leftrightarrow \left\{ \begin{align}  & 2<x<3 \\  & x<\frac{3-\sqrt{5}}{2}\vee x>\frac{3+\sqrt{5}}{2} \\ \end{align} \right. \) \( \Leftrightarrow \frac{3+\sqrt{5}}{2}<x<3 \)

Do đó, hệ bất phương trình (I) có nghiệm.

Vậy m = 1.

 

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *