Cho hình lăng trụ tam giác đều ABC.A’B’C’ có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60O, cạnh AB = a

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60O, cạnh AB = a. Tính thể tích V của khối lăng trụ ABC.A’B’C’.

A. \( V=\frac{\sqrt{3}}{4}{{a}^{3}} \)

B.  \( V=\frac{3}{4}{{a}^{3}} \)             

C.  \( V=\frac{3\sqrt{3}}{8}{{a}^{3}} \) 

D.  \( V=\sqrt{3}{{a}^{3}} \)

Hướng dẫn giải:

Đáp án C.

Gọi M là trung điểm của BC suy ra  \( AM\bot BC  \) (1)

Ta có: \( \left\{ \begin{align} & BC\bot AM \\  & BC\bot AA’ \\ \end{align} \right.\Rightarrow BC\bot A’M \) (2)

Mặt khác:  \( (ABC)\cap (A’BC)=BC  \) (3)

Từ (1), (2), (3) suy ra:  \( \widehat{\left( (ABC),(A’BC) \right)}=\widehat{A’MA}={{60}^{0}} \)

Vì tam giác ABC đều nên  \( {{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4} \) và  \( AM=\frac{a\sqrt{3}}{2} \).

Ta có:  \( AA’=AM.\tan {{60}^{0}}=\frac{3a}{2} \)

Vậy  \( {{V}_{ABC.A’B’C’}}=AA’.{{S}_{\Delta ABC}}=\frac{3a}{2}.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{3{{a}^{3}}\sqrt{3}}{8} \)

 

Các bài toán liên quan

 

Các bài toán mới!

Thông Tin Hỗ Trợ Thêm!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *