Trong không gian Oxyz, cho hai đường thẳng d1:x=1+3t;y=−2+t;z=2, d2:(x−1)/2=(y+2)/−1=z/2 và mặt phẳng (P):2x+2y−3z=0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của d1 và (P), đồng thời vuông góc với d2

(THPTQG – 2017 – 123) Trong không gian Oxyz, cho hai đường thẳng \( {{d}_{1}}:\left\{ \begin{align}& x=1+3t \\  & y=-2+t \\  & z=2 \\ \end{align} \right. \),  \( {{d}_{2}}:\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{2} \) và mặt phẳng  \( (P):2x+2y-3z=0 \). Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của d1 và (P), đồng thời vuông góc với d2?

A. \( 2x-y+2z+13=0 \)

B.  \( 2x+y+2z-22=0 \)  

C.  \( 2x-y+2z-13=0 \)    

D.  \( 2x-y+2z+22=0 \)

Hướng dẫn giải:

Đáp án C.

Tọa độ giao điểm của d1 và (P) là A(4;-1;2).

Mặt phẳng cần tìm đi qua A và nhận  \( {{\vec{u}}_{2}}=(2;-1;2) \) làm VTCP có phương trình  \( 2x-y+2z-13=0 \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Các bài toán liên quan

Các bài toán mới!

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *