Tính thể tích của hình nón có góc ở đỉnh bằng 60∘ và diện tích xung quanh bằng 6πa2

Tính thể tích của hình nón có góc ở đỉnh bằng \( 60{}^\circ \)  và diện tích xung quanh bằng  \( 6\pi {{a}^{2}} \).

A. \( V=\frac{3\pi {{a}^{3}}\sqrt{2}}{4} \).

B.  \( V=3\pi {{a}^{3}} \). 

C.  \( V=\frac{\pi {{a}^{3}}\sqrt{2}}{4} \).                     

D.  \( V=\pi {{a}^{3}} \).

Hướng dẫn giải:

Chọn B

Khối nón có góc ở đỉnh bằng  \( 60{}^\circ  \) nên góc tạo bởi đường sinh và đáy bằng  \( 60{}^\circ \) .

Vậy  \( R=\frac{\ell }{2} \); lại có  \( {{S}_{q}}=\pi R\ell =\pi R.2R=6\pi {{a}^{2}}\Rightarrow R=a\sqrt{3} \).

 \( \Rightarrow h=\sqrt{{{\ell }^{2}}-{{R}^{2}}}=R\sqrt{3}=3a \).

Vậy  \( V=\frac{1}{3}\pi {{R}^{2}}h=3\pi {{a}^{3}} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Không tìm thấy bài viết nào.

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *