Cho hình trụ (T) chiều cao bằng 2a, hai đường tròn đáy của (T) có tâm lần lượt là O và O1, bán kính bằng a

Cho hình trụ (T) chiều cao bằng 2a, hai đường tròn đáy của (T) có tâm lần lượt là O và O1, bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O1 lấy điểm B sao cho \( AB=a\sqrt{5} \). Thể tích khối tứ diện OO1AB bằng

A. \( \frac{{{a}^{3}}\sqrt{3}}{12} \).

B.  \( \frac{{{a}^{3}}\sqrt{3}}{4} \).                                

C.  \( \frac{{{a}^{3}}\sqrt{3}}{6} \).          

D.  \( \frac{{{a}^{3}}\sqrt{3}}{3} \).

Hướng dẫn giải:

Chọn C

Kẻ đường sinh BB’ và gọi H là trung điểm OB’.

Trong tam giác vuông ABB’ có  \( BB’=O{{O}_{1}}=2a \) và  \( AB=a\sqrt{5} \) nên  \( AB’=\sqrt{A{{B}^{2}}-B{{{{B}’}}^{2}}}=a \).

Tam giác  \( OAB’ \) có  \( OB’=OA=AB’=a \) nên  \( OAB’ \) là tam giác đều  \( \Rightarrow AH\bot OB’,\,\,AH=\frac{a\sqrt{3}}{2} \).

Ta có  \( \left\{ \begin{align}  & AH\bot OB’ \\  & AH\bot O{{O}_{1}} \\ \end{align} \right.\Rightarrow AH\bot ({{O}_{1}}OB) \)

 \( \Rightarrow \) Thể tích khối tứ diện  \( A.{{O}_{1}}OB \) là

 \( {{V}_{{{O}_{1}}OAB}}=\frac{1}{3}AH.{{S}_{\Delta {{O}_{1}}OB}}=\frac{1}{6}AH.{{O}_{1}}O.{{O}_{1}}B=\frac{1}{6}.\frac{a\sqrt{3}}{2}.2a.a=\frac{{{a}^{3}}\sqrt{3}}{6} \).

Nhận Dạy Kèm Môn Toán Online qua ứng dụng Zoom, Google Meet,...

Bài toán mới!

Các sách tham khảo do Trung Tâm Nhân Tài Việt phát hành!

Error: View 7b4a035yn3 may not exist

Recommended Posts

No comment yet, add your voice below!


Add a Comment

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *